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1.0 SUMMARY

This document describes the analysis and use of L219 (EQMOD), a digital computer
program to modify matrices according to specific instructions. The particular field of
application of the program is to modify the theoretical equations of motion and load
equations generated by the DYLOFLEX programs Equations of Motion, L217 (EOM),
and Load Equations, L.218 (LOADS), respectively.

The equations of motion and load equation coefficient matrices must be formulated
outside of 1L.219 (EQMOD) and read as program input data from magnetic files. These
matrices can then be modified according to specific card input instructions, which
allow the user to:

®  Use scalar multipliers.

® Replace or increment individual matrix elements.

®  Add sensor equations to the equations of motion.

@  Add the definition of the active control system to the equations of motion.

® Replace the theoretical rigid body and control stability derivatives in the equations
of motion with those calculated by FLEXSTAB or other external means.

® Transform the equations of motion and load equations from the inertia axis system
to the body-fixed axis system.

® Prepare matrix coefficients in a form useable in the Random Harmonic Analysis
Program, L221.

® Prepare matrix coefficients in a form useable in the Linear System Analysis
Program, QR, to include:

e Equations of motion with and without Wagner lift growth functions
® Equations of motion and load equations combined for a time history solution

The modified equations of motion and load equation matrix coefficients are saved on
magnetic files for interfacing with solution programs 1.221 (TEV156) and QR.

Limitations imposed on the matrices are:

® The equations must be generated using the inertia axis system and a straight and
level reference flight condition.

® The vertical and lateral gusts are uncoupled (i.e., there are at most three rigid
body degrees of freedom represented in the matrix coefficients for either the
vertical or lateral gust analysis).



2.0 INTRODUCTION

The computer program L219 (EQMOD) may be used as either a standalone program or
as a module of a program system called DYLOFLEX, which was developed for NASA
under contract NAS1-13918 (ref. 1). Because of the DYLOFLEX contract requirements
developed in reference 2, a program was needed to modify the equations of motion
matrices generated by L217 (EOM) (ref. 3) and the load equation matrices generated by
L218 (LOADS) (ref. 4).

Modifications to the equations are needed when externally developed stability
derivatives, such as experimental, or those developed in FLEXSTAB (ref. 5), are to be
incorporated in the theoretical equations of motion. Other modifications such as varying
the dynamic pressure and velocity, may be desired for parameter studies. These can be
performed by matrix scalar modifications rather than regenerating the equations of
motion and load equations with new aerodynamics.



3.0 SYMBOLS AND ABBREVIATIONS

With the exception of section 6.3 (card input), all the items that appear in this
dqcument are listed below. '

a,b,ecde,f
ay, by

Ay

b

{C3}

=

Fy, Fy, Fz
Fx', Fyr, Fg:

{f}

Dummy coefficients used for the mathematical description of a
typical control system

Wagner indicial lift growth function coefficients .

Time variant coefficients (functions of ¢4, 67, ¢1) used in the
development of the equations of motion.

Reference span, length

Matrix of generalized forcing function coefficients
Matrix of load coefficients due to the excitation forces
Aerodynamic drag coefficient

Aerodynamic lift coefficient

Aerodynamic rolling moment coefficient
Aerodynamic pitching moment coefficient
Aerodynamic yawing moment coefficient
Aerodynamic side force coefficient

Reference chord, length

Aerodynamic drag force

Generalized structural damping associated with elastic
coordinates

External forces defined in the body-fixed axis system.
External forces defined in the interia axis system

Matrix of streamwise distances from points first encountering
the gust to the points encountering the gust later

Gravity constant

Acceleration at a particular sensor location



Ixx, Iyy, 1zz,
Ixy, Ixz, Iyz

K

M
My, My, Mg

Mx',My’,Mz’

p.q, r

al

Sw

Up=Vr

Airplane inertias

Generalized structural stiffness associated with the elastic
coordinates

Aerodynamic lift force

Aerodynamic rolling moment

Generalized structural stiffness, damping, and inertia matrix
coefficients

Load coefficient matrices (nonaerodynamic) of the generalized
coordinate displacement rate, and acceleration, respectively

Generalized aerodynamic stiffness and damping matrix
coefficients

Load coefficient matrices (aerodynamic) of the generalized
coordinate displacements and rates

Airplane mass

Generalized mass associated with the elastic coordinates
External moments defined in the body-fixed axis system
External moments defined in the inertia axis system
Aerodynamic pitching moment

Aerodynamic yawing moment

Rigid body roll, pitch, and yaw rates defined in the body-fixed
axis system

Generalized coordinate
Dynamic pressure
Wing reference area
Laplace variable

True velocity



X,y,z
x,y,z'

Xcgr Zcg

ag

ol

1,81

L$h_J
¢10)d’

¢’ 19' 1“”

Y(t)

Airplane velocities defined in the body-fixed axis system

Perturbation values of antisymmetric and symmetric elastic
coordinates

Airplane vertical velocity in 1-g flight
Linear displacement in the body-fixed axis system coordinates
Linear displacements in the inertia axis system

Coordinates of the airplane’s center of gravity in the body-fixed
axis system

Aerodynamic side force
Gust angle of attack
Trim angle of attack

Exponential coefficients for the Wagner indicial lift growth
function

Wagner indicial lift growth function

Forcing function matrix when accounting for the gradual
penetration of the gust

Matrix of load coefficients due to the excitation forces when
accounting for the gradual penetration of the gust

Modal displacements at the sensor location

Airplane angular displacements defined in the body-fixed axis
system

Airplane angular displacements defined in the inertia axis
system

The amount of rotation experienced by the control surface

The amount of control surface rotating commanded by the
stability augmentation system

Kiissner indicial lift growth function



4.0 ENGINEERING AND MATHEMATICAL DESCRIPTION

The equations of motion developed in L217 (ref. 3) are represented in the form:

M1 {a} + IM3] {a} + [M3] {g} + [M4] {d} » @+ [Ms] {q} +® = {C3} dg-. ¥ -<‘1)
where:

M, C = Appropriate matrix coefﬁcientsll

q, 4, § = Generalized coordinates and their time deratives, including SAS degrees of

freedom
ag = Gust angle
P = Wagner function (equal one for no lift growth)
¥ = Kussner function (equal one for no lift growth)
* Indicates convolution

With gust penetration, the excitation function, {C3} ag, of equation (1) is frequency
dependent and is defined as:

{C3} &y =[4] cos(Q {feh-il8]sin(Q {f,}) (2)

o
[

w/VT, spatial frequency (rad/unit length)

= Matrix of streamwise distances from points first encountering gust to the
points encountering the gust later

—_

b"’i

——
|

[a] = Contribution of the lifting panels due to the gust force at designated
gradual penetration load stations

Relating these matrices in a physical sense, [Ml], [M 2], and [M 3] are usually
associated with the generalized structural forces and the active control system
definition. [M 4] and [M 5] are usually associated with the generalized aerodynamic
forces and {C 3} with the generalized excitation (gust) force.

IThese matrix coefficients can be either constant or nonconstant (frequency dependent)

coefficients,



The load equa.ti'o'n's developed in L218 (ref. 4) follow the same format as the equations of
- motion,

{LOAD}=[M;] {q}+[M;] {a}+[M3] {G}+[My] {a} @

‘ +[Ms] {q} » @+ ({C3} &g * ¥) 3
where:
[M,], [M2], [M3] = Load matrix coefficients of the generalized coordinate
displacement, rate, and acceleration, respectively
[m], [ﬁ-,] = Load matrix coefficients of the generalized coordinate rate
and acceleration convoluted with the Wagner function
{C3} = Load matrix coefficient of the excitation function convoluted

with the Kiissner function

With gust penetration, the excitation function, {63} ag, of equation (3) is frequency
dependent and is defined in a manner similar to equation (2):

{C3} 6y = 18] cos (2 {fy, ) -i [§] sin (2 {f, P “4)

where:

[3] = contribution of the lifting panels due to gust forces at designated gradual
' penetration load stations to aircraft loads.

Relating these matrices in a physical sense, [M;], [Mz], and [M3] are usually
associated with the load resulting from structural response; [My] and [M5] are usually
associated with the load resulting from aerodynamic response forces; and {C3} with load

resulting from the gust excitation force.

EQMOD offers an analyst the capability to alter the matrix coefficients of equations (1)
to (4). Section 4.1 discusses the option to replace the appropriate theoretical
aerodynamic terms in the My, M5 and Cg matrices with airplane stability derivatives
obtained from external sources such as flight or wind tunnel data. Section 4.2 details
the option of incorporating the equations describing an airplane’s active control system
into the basic equations of motion and load equations (all M, M, C and C matrices). The
option to scalar multiply matrices or replace or increment individual matrix elements is
presented in section 4.3. The option to transform the equations of motion of equation (1)
into a form from which a stability analysis can be performed by solving for the
eigenvalues of the equation is explained in section 4.4. Finally, section 4.5 discusses the
changes of the matrix coefficients of equations (1) and (3) to transform from the inertial
axes to the body-fixed axes.




4..1 STABILITY DERIVATIVES

Developing the equations of motion for straight and level flight in the inertia axis
system will result in some rigid body generalized coordinates acting at a vehicle
reference point, representing rigid-body forward displacement (x), vertical displacement
(z), and pitch (8) for symmetric flight conditions and lateral displacement (y), roll (¢),
and yaw () for antisymmetric flight conditions. Some of the generalized coordinates
may also represent rigid rotations about various control surface hinge lines. Embedded
in the generalized aerodynamic and gust matrix coefficients of [My], [Ms], and {Cg}
are the total airplane theoretical aerodynamic forces and moments due to the airplane’s
rigid body motions, control surface deflections, and gust angle of attack. For a
symmetric analysis, these total airplane forces and moments correspond to the
airplane’s lift, drag, and pitching moment defined in the inertial axis system. Similarly,
for an antisymmetric analysis, these forces and moments correspond to the airplane’s
side force, rolling, and yawing moments.

These total airplane forces and moments in the inertial axis system can be related to
appropriate airplane stability derivatives, usually defined in a particular stability axis
system. This relationship is defined in detail in appendix A. A summary of the
relationship between the stability derivatives and the appropriate total airplane force
and moment elements of [My], [Ms], and [C3] are shown in figures 1, 2 and 3. If these
derivatives are available from wind tunnel results, flight test results, or any other
source, of if they are calculated in FLEXSTAB (ref. 5), they can be used to calculate the
appropriate matrix coefficients and used in preference to the theoretical coefficients
calculated in L217 (EOM).

Since elastic modal degrees of freedom (elastic generalized coordinates) are included in
the dynamic analysis, the stability derivatives used in the equations of motion should
be only rigid body stability derivatives. The aeroelastic effects that are represented by
elastic increments to the rigid body stability derivatives are reflected in the equations
of motion through the elastic modal representation. However, since DYLOFLEX in
general does not consider panel aerodynamics that are not perpendicular to lifting
surfaces, no aeroelastic effects are represented in the forward generalized coordinate
displacement. Consequently, the symmetric representations in figures 1 and 3 use both
the rigid stability derivatives and the elastic increment to the rigid stability derivative
in calculating the generalized matrix coefficients for the forward (x) generalized
coordinate to obtain aeroelastic effects for that degree of freedom in the dynamic
analysis.

In addition, the development of the expressions in figures 1 through 3 assumes that the
stability derivatives and the rigid body motions are defined about the same reference
point. If the reference points are at different locations, the corrections that must be
made to the stability derivatives in figures 1 to 3 are shown in figure 4.
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XcoL: 2CoL 0COL' and bCOL are the column locations of the x, 2, 8, and § freedoms.

{Note: There may be more than one control surface freedom.)

The IM4], [M5] elements are defined in the inertial axis system.

Figure 1. — Formulation of The Rigid-Body Symmetric Generalized Aerodynamic Stiffness and

Damping Matrix Elements Using Stability Derivatives
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Aerodynamic stiffness matrix [M 4]
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The [M4] and [M5] elements are defined in the inertial axis system

Figure 2. — Formulation of the Rigid-Body Antisymmetric Generalized Aerodynamic Stiffness and

Damping Matrix Elements Using Stability Derivatives
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(a) Symmetric

Gust forcing column (C3]

*ROW -C -C +a,C +a,C +C +C
D D 1“L 1%L L L
U, ( op Og xR g g ‘E)i

q Sw_

ZROoW |[—— (-c .-a C )
L 1%0
U, op oR

fpow |2 _ ¢

This is the zggy of the Mg matrix with the sign changed. (Note: Due to the sign convention adopted in EOM,
only the symmetric case requires a sign change:) :

(b) Antisymmetric

Gust forcing column [C4]

Sy
- Cy
YROW U, PR
asSyb
%row (- CQ cos oy +Cn. sin ay
' Y, fr PR
¥ Row dSyb
—— (-Cn cos oy -CQ sin oy )

This is the YcoL of the MS matrix.

Figure 3. — Formulation of the Rigid-Body Gust Excitation Matrix Elements Using Stability Derivatives
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(a) Symmetric

c _C = C - —— C
LA D.
n‘GR "‘on c UR [+ GR
REF
Ax
c, =C, +=—c¢_ ¢
REF
C =C + Ax -C az C
m/q\R me < LGR T DGR
REF
C = S - Cy A Az ChA
mas = mA pecany L‘ - D
ag (44 ap c ag
REF
c Ax Az
= —C C
m m L T D
‘SR ‘SR ¢ ) c ’SH
REF

Where Ax = (XREF ~ XAERO REF!
Az = (2ggfF - Z AERO REF)

+z, up

+x, att

Aero ref = Reference point about which the aerodynamic derivatives are calculated.

Ref = Reference point about which the rigid-body motion is defined in the analysis.

Figure 4. — Stability Derivative Corrections for a Different Aero Reference Point



(b) Antisymmetric

CVﬁR C"Bn
cv[/.;R C"‘?n
Cyen and Cnen
CV’r‘R C"’r‘n
Cys - Cng R

Figure 4, — (Concluded)
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4.2 _.ACTIVE CONTROL SYSTEM DEFINITION AND SENSOR EQUATIONS

If the effects of an active control system are to be represented in the equations of motion
of an airplane (eq. 1), it is necessary to define the active control system as a number of
linear second order or less differential equations. As an example of this procedure, a set
of linear differential equations are developed using the sample control system in
figure 5. This control system is only an example used for the purpose of illustration. The
user is free to use any type of control system as long as its mathematical description
can be reduced to a set of linear second order or less differential equations.

a 9Gh+1 _9n+2 c 8¢
pyrary - 2+ dst e — Vehnc‘le
equations
of
f motion
s (€
T8 Accelerometer
h

Figure 5. — Sample Control Systemn

where:

qi to qn = Vehicle degrees of freedom (generalized coordinates)

an = Control surface rotation (8¢)

8¢’ = Amount of control surface rotation commanded by the control system
h = Acceleration at a particular sensor location

Un+1 to

dn+3 = Dummy degrees of freedom

Throughout this section, the control system equations will be developed in the Laplace
domain (s-plane); therefore, all generalized coordinates and control surface rotations
will be functions of the Laplace variable, s.

In the example of figure 5, the equations of motion were derived using n degrees of
freedom with the nth generalized coordinate being the actual control surface rotation,
8c. However, this is not a requirement of the program. The control surface rotation may
occupy any position in the generalized coordinate array. It is also assumed, for the sake
of simplicity, that the amount of rotation experienced by the control surface, 8¢, will be
equal to the amount of rotation commanded by the control system, §.’; that is, the
control system is perfect. This is usually not the case. In reality the physical properties
of a control system (e.g., the deflection of backup structure, maximum actuator force
available, etc.) coupled with the aerodynamic forces on the control surface will result in
a difference between the amount of control rotation commanded and the actual amount
experienced. In such instances, the user must supply the appropriate equations that will
describe this difference.



In the following equations, q to qp represent the airplane’s elastic and rigid body
degrees of freedom. The quantity h will be an acceleration sensed on the vehicle and
used as feedback input by the control system. In general, the quantity h may be
displacement, velocity, or acceleration. qp+1 to gp+3 are dummy degrees of freedom

used to keep the control system equations to a set of second order or less differential
equations.

Working through the block diagram shown in figure 5, the set of differential equations
describing the sample control system is derived as follows:

a) Based on the assumption of a perfect control system

5c = 6c¢’
or
Sc-8c'=0 (5)

b) From the outer loop shown in figure 5

- a2 _
qn+1—s+bh
or
(s+b)an4g -ah=0 (6)

c) The relationship between the acceleration, h, and the generalized coordinates
excluding the dummy coordinates is

d] q
Lopd] & f =s2topd ] - (=h
A ap
or
a1
2Lgp 1] - $-n=0 | (D
an

The mode shapes! ¢p_] are the modal deflections at the particular sensor location
and they can be obtained from the program LOADS(L218). Equation 7 may be
considered as the sensor equation.

d) From the summation point
Ap+2 = 9p+1 ~9n+3

or

An+2 ~9n+1 * dn+3 =0 ®)

15
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e) The forward path gives

acl = C q
s2+ds+e n+2
or
(52 +ds+e)8c’ ~cqpyp=0 9)

f)  Finally, from the inner feedback loop

An+3 = ' b’
stg

or
(s +8)ap+3 -()é6c’' =0 (10)

The coefficients for equations (5) through (10) relating the addition degrees of freedom
(An+1, 9n+2» 9n+3,8¢’ and h) to the unaugmented vehicle degrees of freedom (q; to qp)
must be added to the unaugmented equations of motion matrix coefficients.

Taking' the Laplace transform of the equations of motion (eq. 1), the unaugmented
equations of motion matrix coefficients of [Ml], [Mg], and [M3] represented by square
matrices of size (n X n), can be written as coefficients of s.

qi q ?l
9dn-1 An-1 In-1
5¢ 5¢ 5c

The equations of motion are now expanded by five degrees of freedom with the
coefficients of equations (5) through (10) placed in the appropriate matrix locations as
shown in the following:

-

[ Tfa )} [ HE
M] : . M2 H .
H . U H .
UA: 0 An-1 AE 0 4n-1
1:: -1 |éc i dc
-------- decmccnanananan L cenccecdanvnnccanrnanes
§b00-a0<qn+1’+S §10000<qn+1>
111 00| |aner 10 000 0] |anss
0 0-c00ellanus 0 {0000 d| a3
000-10]]|n 100000] |h
| joogo-fflec J [ i00100] 5 )




My | .
3uai ¢ .
; 9n-1
________ i.----.._------- oc
+g2 i00000]|{a;} (12)

0 {00000 |au
10000 1] [ayes
Lé,1i0 000 of |n
0 {00000f s

y

Each added row in equation 12 corresponds to one of the equations 5 through 10.

The inhclusion of the control system equations, as illustrated in this example, is
accomplished in EQMOD by the user specifying on cards the coefficients and their row
and column locations in the augmented matrices. The aerodynamic related matrices,
[My], [M5] and either {C3} or [¢], are automatically augmented by rows and columns
of zeroes. No aerodynamic forces and moments result from adding the dummy degrees of
freedom.

It is important to note that the sensor equation for this sample control system used
acceleration as a feedback quantity. Therefore, the mode shape matrix, ¢, was placed
in the augmented Mg matrix. In the case of displacement or velocity being the feedback
variable, the modal data would have been placed in the augmented M; or Mo,
respectively. These sensor coefficients (mode shapes) may be either calculated in L219
(LOADS) (ref. 4) and read directly into L219 (EQMOD), or they can be input manually
into the program by cards.

Also with regard to the sensor equation (7), the variable h is automatically included by
EQMOD in the augmented generalized coordinate array. In defining the sensor data,
the user need only specify the matrix (M, Mg, Mg) and the row at the matrix where the
mode shapes are to be placed and EQMOD automatically places a -1 in the eroper
column of Mj. In the sample problem, the mode shapes were placed in the (n+4)" row
of thetﬁ\ugmented Mg matrix (eq. 12), therefore the -1 was placed in the (n+4)" row and
(n+4)"" column of the augmented M; matrix. .

This example used only one sensor h. EQMOD can accept more than one sensor and
more than one type of sensor. However, the method used for more sensors is identical to
that used in this example.

17
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4.3 MATRIX MODIFICATION BY SCALAR MULTIPLICATION,
"REPLACEMENT OR INCREMENTATION OF MATRIX ELEMENTS.

EQMOD offers the capability for modifying all the coefficient matrices in the equations
of motion (1) and (2) load equations (8) and (4). The matrix coefficients may be modified
by multiplying the entire matrix by scalar factors or by replacing or incrementing
individual elements within the matrices. The following is an example of matrix

modification by scalar multiplication.

In the generation of the [My] and [My] matrices, the dynamic pressure is embedded in
the coefficients and thus [M4] and [M4] are functions of the dynamic pressure, q.

[M4], [My] =f(q) (13)

Similarly, the [Ms], [Ms], {C3}, or [#] and {C3} or [@] matrix coefficients are
functions of q and the reciprocal of the freestream velocity, V.

If a parameter study is desired varying only the dynamic pressure and freestream
velocity, but keeping everything else constant including the Mach number, the [M4]
and [M4] matrices can be multiplied by a scalar which is the ratio of the new dynamic
pressure to the original dynamic pressure.

qnew

Mgl new = (My]

_ ) _
(Mgl new =—“§i [(My] (15)

[Ms], [M5], {C3} or [@], and {C3} or [3] matrices can be multiplied by a scalar
consisting of this ratio times the ratio of at the original velocity to the new velocity

A"
T q
(Ms] hew =VF nqew [Ms] (16)

new

and so on.

In performing the matrix modifications in EQMOD, the values of the scalar multipliers,
the replacement elements, and the element increments must be calculated by the user
and input via cards. EQMOD dos not calculate those values internally.



4.4 FORMATION OF EQUATION OF MOTION CHARACTERISTIC EQUATION
WITH WAGNER INDICIAL LIFT GROWTH FUNCTION

A method of obtaining the stability of a system is to calculate the roots of the system’s
characteristic equation. The Linear System Analysis Program (QR) (ref. 6) has the
capability of calculating the characteristic equation of a system from the Laplace
transform of the equations of motion (1) and determining the roots of that equation. It is
the function of EQMOD to formulate a set of matrix coefficients which represent the
Laplace transform of equation (1). The following is the theory to form this set of matrix
coefficients that includes indicial lift growth functions applied to the equations of
motion generalized aerodynamic coefficient matrices.

In the time domain, the Wagner indicial lift growth function may be approximated as

-t -Gt
®(t)=1-aje | -bje A1 an
The Laplace transform of equation (17) is
_1 a b
(P(S) = S - s + al - s + 61 (18)

In equation (1), the Wagner indicial lift growth function is convoluted with q and g.
Using the relationship for the Laplace transform of the convolution integral (Duhamel’s
formula):

-‘/[o/t fit -A) g ) dA\] = Z[{(t) + g(t)] = Z[f(H)] £lg®)] (19)

the left side of equation (1) in the Laplace domain becomes:
as bys

[(Mq) + sIMp] + 52 [Mg] + sIMgl (1 - — & TR

as bls
s+a; s+t 6

+ 52 [Mg] +01 - )] {£@=0 (20)

Expanding and collecting terms gives:
[ (31 + 3 [(My) + M) + @ + BIM3] - Gay + bIMs]]
+52[IMy] + [Mg] + Gy + B [[My] + Mg +ay 6;M3]
- (a + B)IMy] - (28] + bja})[Msl]
+s[ @ +B[IM] + Mg1] + @By (M) + [M51]

- (ayfy + bjapiMgl] + By [IM1 + [M4]]]{.S”(q)} =0 1)
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If indicial 1ift growth is not included, that is:

® (1) = 1
or
& (s) =Si (22)

and consequently a; and by from equation (18) are zero, equation (21) w111 simplify into
only a second power of s equation.

The characteristic equation of the system is obtained by taking the determinant of
equation (21) and setting it equal to zero. It should be noted that due to the inclusion of
the Wagner function, the order of the characteristic equation is increased and additional
roots will be calculated. These additional roots do not represent additional modes of the
system. The number of additional roots is a function of the order of the set of
polynomial equations shown in equation (21) and of the number of degrees of freedom in
the system. The order of the set of polynomials is a function of the number of terms
used in the approximation of the Wagner function.

The function of EQMOD is to form the matrix coefficients of s shown in equation (21).

4.5 TRANSFORMATION FROM INERTIAL AXES TO BODY-FIXED AXES

The matrices for equations (1) and (3) must be generated in the inertial axis system
for straight and level flight. If the user prefers to work in the body axis system. a
transformation from the inertia to body-fixed axis system may be desirable and can be

accomplished.

Presented in this section is a summary of the matrix changes that are made by EQMOD
to the coefficients of equations (1) and (3) in order to convert from inertia axes to
body-fixed axes. A full theoretical development of the transformation is given in
appendix A.

Basically, the effect of the transformation is to redefine the generalized coorinates that
describe the rigid body motions of the aircraft in equations (1) and (3). All other
coordinates (elaétic and control deflections) are not affected. In the inertia axes, which
are fixed in space, the motion of the aircraft relative to these axes is described by the
velocity components in the direction of the inertia axes. In the body-fixed axes, however,
the motion is described by the velocity relative to the fixed inertia axes but in the
direction of the moving axes. The relationships between the velocity components in the
inertia axes and the body-fixed axes are shown in table 1.

Uy and Wj are the reference (in this case lg) values of velocity defined in the reference
axis system which is fixed. U; will be referred to as the airplane forward velocity, V.
For small angles, the reference (1g) angle of attack can be defined as

Wi
al = tan al = W (23)



Table 1. — Relationships Between Velocity Components in the Inertia Axes
and the Body-Fixed Axes

Body-fixed axes

Analysis Inertia axes
<’ u+Ww,6’
Symmetric ! w-U,0 '
6’ q
y' V+U1‘l/"W1¢'
Antisymmetric ¢’ p
¥’ r

21
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The effects of the transformation on the meaning of the generalized coordinates and the
changes in the various matrices will be examined for the symmetric analysis first and
the antisymmetric analysis second.

Symmetric Analysis

In the symmetric analysis, the generalized coordinates can be interpreted as:

In the inertia axis system
rx/‘ . )'(11 f‘x'l\
{a} = qo'p {a} = {é} {d} ={@} (24)
de Qe de
LSCJ laCJ LaCJ

and in the body-fixed axis system

(x ) u (uw
y w w
{a} = qo ¢ da}b = {a ¢ {4} =1a (25)
de de de
Py 5 S
L VcJ L%cJ L Yc )

Note the elastic coordinates, ge , and the control surface coordinates, 8¢, remain
unchanged from one system to the next.

To transform equations (1) and (3) to body-fixed axes, the rigid body generalized
coordinate velocity and acceleration matrices in the inertia axes are replaced with the
expressions given in table 1 and with derivatives of these expressions. The resulting
terms are then regrouped into coefficients of generalized coordinate displacements,
velocity, and acceleration. In doing so, the transformation from inertia to body-fixed
axis system requires the following changes to the coefficient matrices '[Ml], [Mz],

[My], [My], [My], and [My].

The only column changed in these matrices is the 6:

.01 tO
il Mlecol T (Mzzcol ) alexcol) :
el ' Mzecol VT (M3Zcol ) alM?’xcol ) é
in[M4]: M4t9col ) VT (Mszcol ) alMsxcol ) ? (26
MnaCOl = the a column of the original (inertia axis) matrix of the nth matrix

[M{], [Mg], an [_M4] are changed in the same manner. The transformation does not
affect the [M3] [M3], [M5], or [M5] matrices.



Antisymmetric Analysis

Similarly, in the anti-symmetric analysis, the generalized coordinates can be
interpreted as: .

In the inertia axis system:

¢l ¢?r ?r

fab={vl fay= {epta={o} @
de (:le fl.e
b¢ d¢ Bcj

And in the body-fixed axis system:

y v v ]
¢ . P .. p

fa} = v ¢ fab = g« plat= yr ¢ 28)
de de de
o¢ S¢ ‘scJ

Performing a similar substitution as with the symmetric analysis — but with the
antisymmetric variables in table 1— and regrouping, the following changes to the
coefficient matrices are required:

bcol tO Yeolr to
in [M;1: | M - Vo ayM P M + V-M ?
I Iy col T 2y col Ly col T 2y col E
in [M)]: | M - Vo ayM P oM + VoM .5
2 : % col T 3y col i 2 col T 3Y col
in [(Mgl: | M - Vo ayM P M + VM 29)
4 : % col TSy col i Y col TSy col ;

[ﬁl], [—l\iz], and [My] are changed in the same manner. Again, [Mg], [M3], [Ms], and
[Ms] are not affected by the transformation. EQMOD performs all matrix
manipulations needed to complete the transformation. The user needs only define the
column locations of the rigid body motions, the lg angle of attack and the airplane’s
forward velocity, V.
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5.0 PROGRAM STRUCTURE AND DESCRIPTION

L219 (EQMOD) has been constructed as an overlay system. Figure 6 shows the overlay
structure and the data input to and output from each overlay. The overlays are:

Main overlay (1.219,0,0) L219ve
Prin;ary overlay (L219,1,0) RDCRDS
Secondary overlay (1.219,1,1) RDEOM
Secondary overlay (1.219,1,2) RDLOD
Secondary overlay (1.219,1,3) RDQR
Primary overlay (1L.219,2,0) EOMMOD
Primary overlay (L219,3,0) LODMOD
Primary overlay (1.219,4,0) QRMOD

The main overlay, L219ve (“v” and “c¢” are version and correction identifiers), is a small

program that calls into execution the primary overlays required to perférm the‘3

operations requested by the user via card input data.

The first overlay called into execution by L219 is always the 1,0 primary overlay
RDCRDS. RDCRDS reads and interprets all card input data, determines the execution
options, and writes the edited input data onto the random scratch file SCRAND.
RDCRDS calls three secondary overlays to process special sections of the input data:

(L219,1,1) RDEOM reads instructions from cards directing the modification of
equations of motion matrices. FLEXSTAB (with the DYLOFLEX
modification, ref. 7) stability derivatives are read from the file SDSSTP,
if required. Also, sensor equations will be read from the file LODTP2, if
requested.

(1.219,1,2) RDLOD reads instructions from cards directing the modification of load
equation matrices.

(L219,1,3) RDQR reads instructions from cards directing the preparation of
matrices for the program QR.

The remaining primary overlays (2,0, 3,0, and 4,0) will be executed only if requested by
the user. All primary overlays read input instructions from SCRAND.



gc

1-¢9,)
14,.18,19
L2]9)]’0 Read All
SDSSTP | RDCRDS | Input Data
LODTP2
Fl—l 3. Fs.—n 7. [ia.z—l 86 OMTAP LODTAP
t ! !
|L219,1,1 L219,1,2 jL219,1, 1.219,2,0] Modify Equations L219,3,0| Modify Load L219,4,0] Prepare QR
RDEOM | [ ROLOD || RDQR EOMMOD | of Motion LODMOD | Equations QRMOD | Matrices
EQEOM EQLOD QRTAP

QSCRAND

*Numbers refer to the card sets or cards which are used for input by
each overlay.

Figure 6. — L219 (EQMOD) Overlay Structure and Input/Output Files
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Overlay 2,0 (EOMMOD) modifies the equations of motion matrices read from the file
EOMTAP. The modifications are made in the following order (all are optional):

Calculate stability derivatives and store over the proper matrix elements.
Scalar-multiply matrices. _ -
Add sensor equations.

Replace and increment elements.

Perform the inertia to body-axis transformation.

The resulting matrices are written onto the file EQEOM specified by card input in
Overlay 1,0 for use in the Random Harmonic Analysis program, L221 (ref, 8).

Overlay 3,0 (LODMOD) modifies the load equation matrices read from the file
LODTAP. The changes are made in the following order.

Scalar-multiply matrices.
Replace and increment elements.

Perform inertia to body-axis transformation.

The resulting matrices are written onto the file EQLOD specified by card input in
Overlay 1,0 for use in the Random Harmonic Analysis program, L221, (ref. 8).

Overlay 4,0 (QRMOD) prepares matrices for the program QR. The necessary equations
of motion and load equation matrices are used to form the matrices for rooting and for a
time history solution. The matrices are written onto the file QRTAP as specified on card

input in Overlay 1,0.

For a more complete description of the L219 (EQMOD) program structure see volume II
of this document.



6.0 COMPUTER PROGRAM USAGE

The program was designed for use on the CDC 6600. The machine requirements to
execute L219 (EQMOD) are:

Card reader To read control cards and card input data.

Printer To print standard output information, optional intermediate results and
diagnostic messages.

Disk storage  All magnetic files not specifically defined as magnetic tapes are
assumed to be disk files used for input, output, and temporary file
storage.

Tape drive For “permanent” storage of data; magnetic files are copied to and from
magnetic tapes with control cards before and after program execution.

The program L219 (EQMOD) is written in FORTRAN and may be complied with either
the RUN or FTN compiler. L219 may be executed on either the KRONOS 2.1 or NOS
operating system.

6.1 CONTROL CARDS

The following list is a typical set of control cards used to execute L219 (EQMOD) using
the absolute binaries from the program’s master tape.

Job card

Account card

REQUEST(MASTER,F=I,LB=KL,VSN=66XXXX) Retrieve the
REWIND(MASTER) program from its
SKIPF(MASTER) Master tape
COPYBF(MASTER,L219)

RETURN(MASTER)

27
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: : ’ Prepare optional
’ input data files

L219. [ Excecute L219 (EQMOD)
o ' Save optional output
: data files
EXIT.

DMP(0,field length)

--- End-of-record
o — —

Card input
Data

--- End-of-file
6.2 RESOURCE ESTIMATES

The computer resources used (core requirements, tapes, printed output, time, etc.) are a
function of the problem sjze and program options used.

FIELD LENGTH
The field length required by L219 (EQMOD) is dependent upon the problem size and the
program module(s) used. Core must be requested based on the largest amount of core

needed for any one module to be run, that is:

RDCRDS
Field length = Maximum required for EOMMOD

LODMOD

QRMOD

For each module, the core requirements are determined from the following formulas
RDCRDS 110,0005 + NDOF*NDOF

EOMMOD 71,0003 + 3*NDOF*NDOF

LODMOD 66,0003 + 2*NODF*NDOF + NDOF*NLD

QRMOD 67,0008 + 2*NDOF*NDOF

2

=T R



where: NDOF = number degrees of freedom

NLD number of loads

Time Estimate

The time estimate is dependent upon the problem size. However, the average time to
run most average jobs should be less than 25 seconds.

Printed Output
The maximum number of lines of printed output has been limited to 40 000, which
should be enough for any L219 (EQMOD) program execution. The average line count is
about 1000 lines. If output line limit is exceeded, use the following control card to
execute the program:

L219(PL = limit)
where “limit” is the approximate number of lines required to execute this program.

6.3 CARD INPUT DATA

A detailed description of the card input data needed to execute EQMOD is given in
sections 6.3.1 through 6.3.4. A summary of the card input data is given in section 6.3.5.
The summary is a quick reference for the necessary card input and is included for use
only after familiarity with the program has been obtained.
The task(s) performed by L219 (EQMOD) are broken into three subtasks, each with its
own section of code known as a primary overlay. The entire set of primary overlays is
driven by a small program (main overlay) named L219vc.
L219vc reads program directive cards to:
®  Assure that the data being read is intended for L.219 (EQMOD).
® Determine which section of code (primary overlay) of L219 is to be executed next.
® Determine what data and results are to be printed.
® Determine input and output magnetic file names.

® Determine total problem size.

The order in which the input cards are read is shown in figure 7.
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Figure 7. — (Continued)
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Format of Card Input Data

All card data is read in fixed fields, specific columns of the cards. On the pages that
follow, the required card columns are defined next to each keyword or variable. The
following conventions, which are used throughout the program, should be noted.

e Al floating point variables are read with format E10.0.
®  All integer variables are read with the format I5.

° All hollerith variables (keywords, etc.) are read with the format A10; however,
when the program is trying to recognize keywords, it checks only the first four
characters.

All data fields end on a card column that is a multiple of five.

6.3.1 GENERAL OPTIONS

The first card read by L219 (EQMOD) must be $EQMOD, card set 1.0. It indicates that
card data for L219 (EQMOD) follows.

After Card Set 1.0 the program continues to read data cards and checks the first four
characters for keywords. The keywords introduce the remaining card sets. Card sets 2.0
through 5.0 define the problem size, file names, and options to be used throughout the
program execution.

Card Set 1.0 - Equation Modifier (EQMOD, L219) for
Equations of Motion and Load Equations

KEYWORD/
COLS. | VARIABLE FORMAT DESCRIPTION
1-10 SEQM od A4,6X This card must be the first card read by the Equation

Modifier (EQMOD) program. The $EQMOD card indicates

that the data following is for the Equation Modifier

Program.
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Card Set 2.0 - Case Labeling Information

Card 2.1 - Title Card

The title card after the $EQMOD card will be stored in core, up to four title cards, for
page headings on printouts.

KEYWORD/
COLS. | VARIABLE FORMAT DESCRIPTION
1-10 TIiTLe Ad,6X Keyword for job title
11-80 | TITLE; , 4 7A10 Job title. Used to provide description of the job.
= ’




IR

Card 2.2 - Comment Card (Optional)

- Comment cards may appear anywhere in the input data stream except where data
follows a keyword card.

KEYWORD/
COLS. { VARIABLE FORMAT DESCRIPTION
1-2 c_ A2 Keyword for comment card.
NOTE: A blank in column 2 must follow the C in
column 1.
3-80 COMMENT A8,7A10 | Comments will appear in the printed output as they
are read. It is not treated as data.

Card Set 3.0 - Problem Size

.

L.

KEYWORD/
coLs. VARIABLE FORMAT DESCRIPTION
_ 1-10 SIZE A4,6X Keyword indicating the problem size.
-1 11-15 NDOF 15 Total number of output degrees of freedom (no default)
(2 100)
16-20 NPAN 15 Total number of output panels (number of gust zones)
NOTE: 1If the equations of motion are generated external
to DYLOFLEX set
NPAN = 0 if no gradual penetration is being used
and C, is real.
(Default: NPAN extracted from EOM tape) (< 50)
21-25 NFREQM 15 Number of frequencies at which unsteady aerodynamics are
defined. {Default: NFREQM extracted from EOM tape)
(< 20)




Card Set 4.0 - Output Options
Card 4.1 - Output Tapes

KEYWORD/

COLS. |VARIABLE FORMAT DESCRIPTION

1-10 OUTPut A4,6X Keyword indicating output file names and file positions.

11-20 | JUTEOM A7,3X File name where equationsof motion matrices are written.
(Default: IUTEOM = EQEOM)

21-25 | IFLEOM I5 File position number where equationsof motion matrices
are written.
(Default: IFLEOM = 1)

26-30 | dummy 5X Blanks.

31-40 | IUTLOD A7,3X File name where load eguations matrices are written.
(Default: IUTLOD = EQLOD)

41-45 | IFLLOD I5 File position number where load equationsmatrices are
written.
(Default: IFLLOD = 1)

Card 4.2 - Print Input Matrices (Optional)

KEYWORD/
COLS. | VARIABLE FORMAT DESCRIPTION
1-10 PRINt A4,6X Keyword introducing the print option.
11-20 | INPUt A4,6X Keyword indicating the input matrices to be printed.
21-30 | MATRIX 10x Descriptive word (optional)
31-40 | OPTION AlO Print options:
Keyword Matrices Printed
ALL All input matrices printed
NONE No input matrix printed
FREQUENCY Only input matrices of Ith frequency
{ITHF) printed.
Default: (OPTION = NONE)
41-45 | ITHF 15 (Required only if OPTION = FREQUENCY)
Ith frequency input matrices to be printed.
(Default: ITHF = 1)
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Card 4.3 - Print Output Matrices (Optional)

CoLs.

1-10

KEYWORD/
VARIABLE FORMAT DESCRIPTION
PRINt A4,6X Keyword introducing the print option.
11-20 | QUTPut A4, 6X Keyword indicating the output matrices to be printed.
21-30 | MATRIX 10X Descriptive word (optional)
31-40 | OPTION AlO Print options:
Keyword Matrices Printed
ALL All output matrices printed
NONE No output matrices printed
FREQUENCY Only output matrices of Ith frequency
(ITHF) printed.
CHANGED Only those matrices that have been
changed are printed.
(Default: OPTION = CHANGED)
ITHF I5 (Required only if OPTION = FREQUENCY)

41-45

Ith frequency output matrices to be printed.

(Default: ITHF = 1)

Card Set 5.0 - Symmetric or Antisymmetric Analysis (Optional)

COLS.

KEYWORD/

VARIABLE

IFORHAT

DESCRIPTION

ANTIsymmetri

1-10 WSYMMetric

J

A4,6X

Keyword SYMMETRIC indicates a symmetric analysis for
body axis and derivatives.
Keyword ANTISYMMETRIC indicates an anti-symmetric analysis

for body axis and derivatives.

(Default: SYMMETRIC)
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6.3.2 INSTRUCTIONS TO MODIFY EOM MATRICES

Omit cards sets 6.0 through 13.0 if no equations of motion matrices are to be modified.

Cal__'d sets 6.0 through 13.0 contain operational instructions and data used to modify the
equations of motion for use in the solution program L221 (TEV156) or any other
program that is compatible with these output results.

Card Set 6.0 - Equations of Motion Data

KEYWORD/

COLS. | VARIABLE FORMAT DESCRIPTION

1-10 SEOM A4,6X Keyword introducing the data for equationsof motion

.11720 IN;OM‘ A7,3X% File name where input equationsof motion matrices reside.
(Default: INEOM = EOMTAP)

21-25 ‘INEOMP 15 File position number where equationsof motion matrices
resides.
{Default: INEOMF = 1)

26-65 ‘DYLSELEX} {A46i6x} Keyword DYLOFLEX indicates that the null matrix indicator

NULEOMI 8I5

array is read from the file on which the equations of motion
matrices reside. Otherwise, the null matrix indicator array
is read from this card.

NULEOM; = 0, matrix is null and omitted from file INEOM.
NULEOM; # 0, matrix is to be read from file INEOH.

NULEOMj corresponds to Mj

NULEOM, corresponds to Mj

NULEOM3 corresponds to M,

NULEOM, corresponds to My

NULEOMg corresponds to Ms

NULEOMg corresponds to Cj3

NULEOM; corresponds to fp

NULEOMg corresponds to §

(No default)
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Card Set 7.0 - Stability Derivative Data (Optional)
Card 7.1 - Derivative (Stability) Data

If this option is used and the gust zones (NP.A_N card set 3.0) = 1 (no gust penetration),
the forcing function coefﬁclent matrix @ NPAN=1) or C 3 (NPAN=0) is modified to be
compatible with the response generalized forces My and Me; However if the gust zones
> 1 (gust penetration), the forcing function coefficient matrix ¢ is not modified and
should be modified manually by using card sets 11.0 or 12.0 to be consistent with the
response generalized forces. If the gust coefficient modification is not performed, errors
may result in the responses and loads of the coordinate.

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
A R

1-10 DERIVATIVE | A4,6X Keyword introducing derivative (stability) data.

11-20 FROM 10X Descriptive word (preposition)

21-30 {%%%% A4,6X Keyword CARD indicates derivatives are to be input on cards

T 7.5.1 through 7.7.2.
Keyword TAPE indicates derivatives are to be input on a
FLEXSTAB* SDSSTP file (card 7.4.1).

31-35 NCS I5 Number of céntrol surfaces. If control surface
derivatives are requested (NCS > 0) read card 7.4.2 for
control surface names.

(Default: NCS = 0) Maximum = 20.
36-40 INDUN 15 Indicator to request unsteady derivatives.
INDUN = 0, do not read unsteady derivatives
INDUN # 0, read cards 7.8.1-7.8.2 for unsteady derivatives
(Default: INDUN = 0)
41-50 QUEBAR E10.0 Dynamic pressure, E}(force/lengthz)**
({Default: QUEBAR from EOMTAP)

51-60 vt £10.0 Velocity, true alr speed, Vg,{length/sec.)**

{(Default: VT from EOMTAP)

*Indicates the FLEXSTAB program with the DYLOFLEX meodifications is incorporated
into the SD&SS program.

**The units of force and length must be consistent and identical throughout this
program and the units of the input matrices.
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Card 7.2 - Input Matrix Column Numbers of Rigid Body Freedoms

KEYWORD/ .
COLS. VARIABLE FORMAT DESCRIPTION
- _
JIXCOL X
1-5 IYCOL} I5 Column number of the {Y} freedoms
(Default: column element not changed)
1zcoL}* z}
6-10 IPCOL} 15 Column number of the {¢ freedoms
(Default: column element not changed)
1TcoL}* 9
11-15 ISCOL} 15 Column number of the {¢} freedoms
(Default: column element not changed)
16-70 IDCOLI 1115 Column number of the 61 control surface freedom.
(If more (I = 1, NCS see card 7.1)
cards are
needed, (Default: column element not changed)
FORMAT
for cards
following
is 141I5)

40

*Throughout cards 7.2 through 7.8.1, the upper number in brackets is for ‘symmetric
analysis, and the lower number is for antisymmetric,

If any column numbers are left blank, no changes will be made to the matrix elements

of those freedoms.

-

LA



Card 7.3 - Constants Associated with Derivatives

KEYWORD/
VARIABLE

FORMAT

DESCRIPTION

11-20

21-30

31-40

41-50

51-60

61-70

ax

Az

ALPHAL

SwW

{Cﬁ:n,

CL1R

CL1lE

El0.0

E1l0.0

El10.0

El0.0

E10.0

E10.0

El0.0

X distance from the stability derivative reference
point to the rigid body motion reference point, + AFT
(length) **

(Default: Ax = 0.0) ( See fiqure 4.0)

Z distance from the stability derivative reference
point to rigid body motion reference point, + up
(length) *=*

(Default: Az = 0.0) (See fiquire 4.0)

1G angle of attack, a, ({(degrees)

(Default: ALPHAl = 0.0)

Wing reference area, SW (lengthz)"

(Defaults:
If CARD* - Fatal Error

If TAPE* - Value from SDSSTP)

Reference chord, ¢, (length) **
Reference span, b, (length) **

(Defaults:
I1f CARD* - Fatal Error

If TAPE* - Value from SDSSTP)

"RIGID" steady state derivative, C
(Defaults:
If CARD* - CLIR = 0 and warning message printed.

L1R

If TAPE* - Value from SDSSTP)
"ELASTIC INCREMENT" steady state derivative, CLlE

(same defaults at cLlR

*Note: Keyword CARD or TAPE is defined on Card 7.1, cols. 21-30.

**Qee note on Card 7.1
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Card 7.4.1 - Files Containing FLEXSTAB Aerodynamic Data

Read this card only if columns 21 through 30 are TAPE on card 7.1.

KEYWORD/
COLS. | VARIABLE FORMAT DESCRIPTION
1-10 SDSStp Al0 Keyword introducing replacement name for the FLEXSTAB
aerédynamic data file.
11-20 | SDINDX Al Name of the file (tape or disk) containing the index
table to the FLEXSTAB aerodynamic data.
The name must begin in column eleven, begin with a
letter, and have less than seven characters.
Default: SDINDX = "SDINDX"
21-30 | SDDATA AlQ Name of the file (tape or disk) containing the FLEXSTAB
aerodynamic data. NOTE: SDINDX # SDDATA.
The name must begin in column 21, begin with a letter
and have less then seven characters.
Default: SDDATA = "SDDATA"
31-35| ISCAs I5 FLEXSTAB aerodynamic data case number from which L217 (EOM)
must extract derivative. '
Default: 1ISCas =1
36-70 Available for comments
—
Card 7.4.2 - Derivatives from File per Control Surface
Read this card if columns 21 through 30 are TAPE, and NCS > 0, on card 7.1. Then go
to card set 7.8 for unsteady derivatives.
KEYWORD/
COLS. {VARIABLE FORMAT DESCRIPTION
1-70 NAMESCI 7A10 User defined active control surface names associated
with active control surface derivatives.
(Repeat
this (I = 1, NCS see card 7.1)
card if
more Names are first defined in FLEXSTAB.
names
are
needed)
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Note: Read cards 7.5.1 through 7.8.2 only if keyword CARD (card 7.1) is selected. ‘

Card 7.5.1 - RIGID Derivatives from Cards

KEYWORD/
COLS. | VARIABLE FORMAT DESCRIPTION
CLU . ’cL.
1-10 E10.0 Steady state derivative, Ug
CYB Cyg
fCDU . 'Cm‘i
11-20 E10.0 Steady state derivative, R
cLBREF c, .
REF
[CMUREF (R
21-30 E10.0 Steady state derivative, REF
| cNBREF e
: REF
(CLA ’cm
31-40 E10.0 Steady state derivative, R
cyp G
CDA ’cDa
41-50 E10.0 Steady state derivative, R
|CLPREF c Lf:
REF
[ CMAREF C
51-60 E10.0 Steady state derivative, { "CREF
| cnpReF [cniS
REF
Card 7.5.2 - ELASTIC INCREMENT Derivatives Read from Cards
Read this card for SYMMETRIC analysis only (card set 5.0).
KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-10 CLUE E10.0 Steady state derivative, CLG
E
11-20 CDUE E10.0 Steady state derivative, cDﬁ
E
21-30 dummy
31-40 CLAE El10.0 Steady state derivative, cLa
E
41-50 CLAE E10.0 Steady state derivative, CDa
: E




Card 7.6.1 - RIGID Derivatives Read from Cards

KEYWORD/
coLSs. VARIABLE FORMAT DESCRIPTION
[cLo Crq
1-10 E10.0 Steady state derivative, R
(CYR ) C.s
(oo
[cDo Cpg
11-20 E10.0 Steady state derivative, R
|CLRREF Cpp
’ REF
CMQREF) ‘ fC_a
21-30 E10.0 Steady state derivative,{ " -REF
|CNRREF €.p
REF
Card 7.6.2 - ELASTIC INCREMENT Derivatives Read from Cards
Read this card for SYMMETRIC analysis only (card set 5.0).
KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-10 CLQE E1l0.0 Steady state derivative, CLQ
E
11-20 CDQE E10.0 Steady state derivative, ch
E

Card 7.7.1 - RIGID Derivatives Read from Cards per Control Surface
Repeat card 7.7.1 and 7.7.2 in pairs NCS times (card 7.1.). If NCS = 0, omit this card.

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
'CLDI : ) . Ces
1-10 E10.0 Steady state derivative,} LSy
CYD c . I
(S . Cps
11-20 E1l0.0 Steady state derivative, RI
_CLDREFI CLG
REFI
rCMDREFI ) ) (N
21-30 E10.0 Steady state derivative,{ ™ REF
[CNDREFI C.s
REFI
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Card 7.7.2 - ELASTIC INCREMENT Derivatives Read from Cards per Con
Read this card for SYMMETRIC analysis only (card set 5.0).

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-10 CLDE, E10.0 Steady state derivative, CLG
_ R
11-20| CDDE; E10.0 Steady state derivative, C 1
. R
(I = 1, NCS) T
Card 7.8.1 - RIGID Unsteady Derivatives Read from Card
Read this card if INDUN # 0 (card 7.1).
KEYWORD/ 1 S
COLS. { VARIABLE FORMAT DESCRIPTION
CLADOT - _’ELEi‘ -
1-10 J E10.0 Unsteady derivative, R
CYBDOT : {cyé
CDADoﬂ rcD&
11-20 E10.0 Unsteady derivative, R
CLBDRF | {c u‘;‘
REF
CMADRF [Cs
21-30 E10.0 Unsteady derivative, REF
CNBDRF | (Crd
REF

Card 7.8.2 - ELASTIC INCREMENT Unsteady Derivatives Read from Car:
NOTES: 1. Read this card for SYMMETRIC analysis only (card set 5.0)
2. Read this card if INDUN = 0 (card 7.1).

KEYWORD/

COLS. | VARIABLE FORMAT" DESCRIPTION
1-10 CLADTE El10.0 Unsteady derivative, cLa

E
11-20 | CDADTE E10.0 Unsteady derivative, C_3

D&E




Card Set 8.0 - Scale EOM Matrix Elements (Optional)
This card is repeated for each EOM matrix to be scaled.

KEYWORD/

COLS. | VARIABLE FORMAT DESCRIPTION

1-10 | SCALe Alo Keyword introducing matrixlelements to be_scaled.

11-20 | MATNAM Al0 Equationsor ﬁotiOn matrix n.ame to be scaled. Matrix
name must be one of the following keywofds:
M1, M2, M3, FREQ, M4, M5, C3, FL, PHI

21-25] IFREQ I5 Matrix of Ith fregquency
(Default: IFREQ = 1)

26-30 | dummy 5X Blanks

31-40 | SCLMAT E10.0 Scalar by which each element of this matrix is

multiplied.

Card Set 9.0 - Sensor Data (Optional)
Card 9.1 - Introduce Sensor Data

COLS. 5:;?::22 FORMAT DESCRIPTION

1-10 SENSor Ad,6X Keyword introducing sensor data

11-20 A7, 3X Name of file on which the input sensor matrices reside.
(Default: INSEN = LODTP2)

21-25 INSENF 15 File position number in which sensor matrices réside.
(Default: INSENF = 1)

26-30 NLDSEN I5 Number of loads (row size) of the sensor matrices being
read from INSEN file.
(No default)

31-4S {DYE?FLEX A4,11x’ Keyword DYLOFLEX indicates that the null matrix indicator

NULEENI 318 array is read from the file on which the sensor matrices

reside. Otherwise, the null matrix indicator array is read

from this card:
NULSENI = 0, matrix is null and omitted from the file.
NULSENI # 0, matrix is read from file.

NULSEN

1 corresponds to M

NULSEN

2 corresponds to M

NULSEN3

(no default)

corresponds to M
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Card 9.2 - Row Selection of Sensor Data

Repeat this card for each matrix from which sensor rows are selected.

. KEYWORD/ o 7
COLS. | VARIABLE FORMAT DESCRIPTION
1-10 MiBAYT A4,6X Matrix name of sensor data. Matrix name must be one of
‘gggér' the following keywords:
M3BAT MIBAR, M2BAR, M3BAR
(No default)
.11—15 INROW 15 The row number of the input matrix where sensor data will
. be selected.
’ (No default)
116~20 | IUTROW I5 The row number of the output (augmented) matrix where the
selected sensor data will be placed.
(No default)
21-25 | INROW 15 )
[26-30 IUTROW is > Each pair of input and output row numbers is repeated
(31-35 | INROW I5 for each row selection.
L36—40 IUTROW I5 If more than six rows selected, repeat this card
[41-45 | INROW 15 with the same matrix name.
146-50 | TUTROW 15 NOTE: a "-1." is also placed in the "IUTROW" row -
(51—55 INROW 15 column diagonal element of the Ml equation of
L56-60 | IUTROW 15 motion matrix.
61—65_ INROW I5
l[sve-m TUTROW 15 J

Card 9.3 - End Sensor Data

-KEYWORD/
COLS. | VARIABLE FORMAT DESCRIPTION
1-10 END sensor |Af4,6X Keyword indicating the end of the sensor data.
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Card Set 10.0 - SAS Data (Optional)
Card 10.1 - Introduce SAS Data

KEYWORD/ .
COLS. | VARIABLE FORMAT DESCRIPTION
1-10 SAS Al4,6X Keyword introducing SAS data.

Card 10.2 - SAS Data

This card is repeated as many times as necessary in order to define the elements of the
stability augmentation system (SAS) equations which are to be placed in the equations

of motion.
KEYWORD/ :
COLS. | yaARIABLE | FORMAT DESCRIPTION
1-5 ISAS 15 Ith row of augmented equation to the ejuations of motion
(Default: Pickup previous row number; exception, the
first ISAS has no default.)
6-10 JSAS I5 Jth column of augmented equation to the equationsof motion
(No default)
11-20 M11J E10.0 Value of the element of the SAS equation to be placed in
the Ith, Jth location of the M1 matrix.
21-30 M21J E10.0 Value of the element of the SAS equation to be placed in
the Ith, Jth location of the Mz matrix.
31-40 M31J E10.0 Value of the element of the SAS equation to be placed in
the Ith, Jth location of the H3 matrix.
Card 10.3 - End SAS Data
KEYWORD/
COoLS. VARIABLE FORMAT DESCRIPTION
1-10 END sas Al,6X Keyword indicating all SAS data has been defined.
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Card Set 11.0 - Replace EOM Matrix Elements (Optional)

This card may be repeated.

[ | kevworo/ -
COLS. | VARIABLE FORMAT DESCRIPTION
1-10 REPLace A6,6X Keyword introducing matrix elements to be replaced.
11-20 | MATNAM A10 Equationsof motion matrix name to be replaced. Matrix
name must be one of the following keywords:
M1, M2, M3, FREQ, M4, M5,
C3, FL, PHI
21-25| IFREQ . I5 Matrix of Ith frequency
{(Default: 1IFREQ = 1)
26-30 | dummy 5X Blanks
31-35] IROW 15 Ith row of matrix
36-40 | JCOL I5 Jth column of matrix
41-50 | AIJ E10.0 Value replacing Ith, Jth element of matrix

Card Set 12.0 - Increment EOM Matrix Elements (Optional)
This card may be repeated.

KEYWORD/ i
COLS. | VARIABLE FORMAT DESCRIPTION
U S | 1
. 1-10 INCRement | A4,6X Keyword introducing matrix elements to be incremented
111—20 MATNAM A10 Equation of motion matrix name to be incremented. Matrix
Name must be one of the following keywords:
M1, M2, M3, FREQ, M4, M5,
C3, FL, PHI
21-25| IFREQ 15 Matrix of Ith frequency
(Default: IFREQ = 1)
26-30 | qummy 5X Blanks
31-35} IROW IS Ith row of matrix
36-40 | JCOL I5 Jth column of matrix
41-50 | AIJ E10.0 Value incrementing Ith, Jth element of matrix

T —
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If the user wishes to transform the equations of motion and load equations from inertial
axes to body-fixed axes, this card set is used. This card set is not repeated.

Card Set 13.0 - Body Axis Transformation (Optional)

For this card set, the upper number in brackets is for the symmetric analysm and the
lower number is for the antisymmetric analysis. -

KEYWORD/
COLS.| VARIABLE FORMAT DESCRIPTION
1-10| BODYaxis A4,6X% Keyword introducing body axis transformation data
ICOLxl COL‘
11-15 I5 column of the original axis
ICOLY| COL‘ (Default: column elements not used)
ICOLZ ZCOL‘
16-20 J I5 column of the original axis
ICOLP ¢COL4 (No default)
ICOLT) ®cor
21-25 15 column of the original axis
ICOLS; wCOLJ (No default)
26-30| dummy 5X Blanks
31-40| ALPHAl E10.0 oy 1G angle of attack (degrees)
(Default: ALPHAl = 0.0)
41-50{ BODYVT E10.0 Velocity, true air speed, VT’ (length/sec.) ¥
(Default: Body VT from EOMTAP)

*See note on card 7.1.

=



~ 8.3.3 INSTRUCTIONS TO MODIFY LOADS MATRICES

Omit card sets 14.0 through 17.0 if no load equation matrices are to be modified.

Card sets 14.0 through 17.0 contain operational instructions and data used to modify
the load equations for use in the solution program L221 (TEV156) or any other program
that is compatible with these output results.

Card Set 14.0 - LOADS Equations Data

COLS.

1-10
11-20

21-25
26-30

31-65

KEYWORD/
VARIABLE

$LOAdSs

INLOD
INLODF

NLDOU

{DYLOFLX
NULLOD

FORMAT

A4,6X%

A7,3X
I5

15

A4,3x}
715

Keyword introducing the data for load equations

File name where input load equationsmatrices reside.
(Default: INLOD = LODTAP)

File position number where load equationsmatrices reside
(Default: INLODF = 1)

Total number of output loads

(No default)

Keyword DYLOFLX indicates that the null matrix indicator
array is read from the file on which the load equations
matrices reside. Otherwise, the null matrix indicator
array is read from the same card columns.

NULLODI = 0, matrix is null and omitted from the file.
NULLODI # 0, matrix is read from file.

NULLOD, corresponds to M,

NULLOD, corresponds to ﬁ;
NULLOD, corresponds to ﬁs
NULLOD,, corresponds to ﬁ;
NULLOD, corresponds to ﬁ;
NULLOD, corresponds to E}
NULLOD7 corresponds to :

Note: Card set 14.0 is required if SAS equations are added to the equations of motion.
The use of card set 14.0 will increase the column size of the load coefficient -
matrices.
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Card Set 15.0 - SCALE LOADS Matrix Elements (Optional)

Repeat this card for each LOADS matrix to be scaled.

KEYWORD/

COLS. | VARIABLE FORMAT DESCRIPTION

1-10 SCALe At0 {eyword introducing matrix elements to be scaled.

11-20 | MATNAM Al10 Load équation matrix name to be scaled, matrix name must
be one of the following keywords:
M1BAR, M2BAR, M3BAR, MuUBAR, MSBAR, C3BAR, PHIBAR

20-25 | IFREQ 15 Matrix of Ith frequency
(Default: IFREQ = 1)

26-30 { dummy 5X Blanks

31-40 | SCLMAT E10.0 Scalar, multiply each element of this matrix by this value.

Card Set 16.0 - Replace LOADS Matrix Elements (Optional)

This card may be repeated.

KEYWORD/

COLS. | VARIABLE FORMAT DESCRIPTION

1-10 REPLace Al,6X Keyword introducing matrix elements to be replaced.

11-20 | MATNAM A10 Loads Egquation matrix name to be replaced. Matrix name
must be one of the following keywords:
M1BAR, M2BAR, M3BAR, MUBAR, M5BAR, C3BAR, PHIBAR

21-25 | IFREQ IS5 Matrix of Ith frequency
(Default: IFREQ = 1)

26-30 [ dummy 5X Blanks

31-35 | IROW I5 Ith row of matrix

36-40 | JCOL 15 Jth column of matrix

41-50 | AIJ E10.0 Value replacing Ith, Jth element of matrix
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Card Set 17.0 - Increment LOADS Matirix Elements (Optional)

This card may be repeated.

COoLSs.

1-10

11-20

.21-25

26-30
31-35
36-40

41-50

KEYWORD/
VARIABLE

INCRement

MATNAM

IFREQ

dumny
IROW
JCOL

AlJ

FORMAT

A4 ,6X

Al10

I5

5X
15
I5

E10.0

DESCRIPTION

Keyword introducing matrix elements to be incremented.
Load equation matrix name to be incremented matrix name
must be one of the following keywords:

M1BAR, M2BAR, M3BAR, MUBAR, M5BAR, C3BAR, PHIBAR

Matrix of Ith freguency

(Default: IFREQ 1)
Blanks

Ith row of matrix
Jth column of matrix

Value incrementing Ith, Jth element of matrix

6.3.4 INSTRUCTIONS FOR PREPARATION OF QR MATRICES

Omit card set 18.0 if no QR matrices are to be generated.

Card set 18.0 contains operational instructions and data used to modify the equations of
motion and load equations for use in the solution program QR or any other program
that is compatible with these output results.

Card Set 18.0 - QR Data Preparation (Optional)

Repeat cards 18.1 and 18.2 for each of either cards 18.3 or 18.4 or 18.5, and 18.6

1.

2.

QR data may be executed with the modified or unmodified EOM and LOADS
matrices as specified on cards 18.1 and 18.6 respectively.

QR data may be executed without reading card sets 4.0 through 17.0

Card 18.1 - Request QR Data Preparation

KEYWORD/ i

COLS. | VARIABLE FORMAT DESCRIPTION

1-10 3QR A4,6X Keyword introducing the data for QR output

11-20 | IUTQR A7,3X File name where QR matrices are to be written.
(Default: IUTQR = QRTAP)

21-25 | IFLQR 15 File position number where QR matrices are to be
written.
(Default: IFLOR = 1)
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Card 18.2 - Input Equations of Motion Matrices for QR

KEYWORD/ .

COLS. | VARIBLE FORMAT DESCRIPTION

1-10 QREOMm Al,6X Keyword introducing the source- of the eqnatiomof
motion matrices. .

11-20| INEOM A7,3X File name wheie input equationsof motion matrices reside.
(Default: INEOM = EQEOM)

21-25] INEOMF 15 File position number where equationsof motion matrices
resides
(Default: INEOMF = 1)

26-65 gétggaf} ggéjﬁx} Keyword DYLOFLX indicate null matrix indicator array is read

from file where equationsof motion matrices reside. Other-
wise, null matrix indication array is read from cards.

NULEOMI = 0, matrix is null and omitted from the file.

NULEOM{ # 0, matrix is read from file

NULEOM corresponds to M

1 1

NULEOM corresponds to M

2 2

NULEOM3 corresponds to M

NULEOMu corresponds to M

NULEOM5 corresponds to M

NULEOM6 corresponds to C

NULEOM7 corresponds to fl

NULEOM; corresponds to §

(No default)




Card 18.3 - QR Wagner Option

This card is used if roots with Wagner indical lift growth functions are to be calculated

by QR.
KEYWORD/

_COLS. | VARIABLE FORMAT DESCRIPTION
:
1-10 WAGNer Ab4,6X Keyword indicating QR matrices are to be formulated using the
. . equations of motion with Wagner functions.
11-20 { AQR E10.0 Wagner function, a;
21-30 | BQR E10.0 Wagner function, by
31-40 | ALQR E10.0 Wagner function, a) (see equation I5)
41-50 | BEQR E10.0 Wagner function, 8)

Card 18.4 -_QR Root Option

This card is used if roots without Wagner indical lift growth function are to be
calculated by QR.

F_ﬁ« KEYWORD/
COLS. | VARIABLE FORMAT DESCRIPTION
;1—10 ROOT A4,6X Keyword indicating QR matrices are to be formulatedusing the
equations of motion without Wagner functions.
Card 18.5 - QR TIME Option
This card is used if time histories are to be calculated by QR.
KEYWORD/
COLS. | VARIABLE FORMAT DESCRIPTION
1-10 TIME A4, 6X Keyword indicating QR matrices are to be formulated using the

eguationsof motion and load equation matrices for a time

history solution.




Card 18.6 - Input Load Equations Matrices for QR
This card is required if keyword TIME (card 18.5) is used.

KEYWORD/
COLS. | VARABLE FORMAT DESCRIPTION
1-10 QRLOad Ab,6X Keyword introducing the source of the load
equation matrices,
11-20 | INLOD A7,3X File name where input load equation matrices reside
(Default: INLOD = EQLOD)
21-25 | INLODF 15 File position number where load equationsmatrices reside
(Default: INLODF = 1)
26-30 | NLDQR I5 Number of loads
(Default: If DYLOFLX file, NLDQR is extracted from the first
recordon the file INLOD)
31-65 DYLOFLX Ald, 3X Keyword DYLOFLX indicate null matrix indicator array is !
NULLOD 715 read from file' where load equationsmatrices reside.

I

Otherwise, null matrix indicator array is read from this card.

NULLODI = 0, matrix is null and omitted from the file INLOD.

NULLOQI ¥ 0, matrix is to be read from f£ile INLOD .
NULLOD1 corresponds to M1
NULLOD2 corresponds to M2
NULLOD3 corresponds to H3

NULLODu corresponds to M

NULLOD5 corresponds to M5
NULLOD6 corresponds to C3
NULLOD, corresponds to $

Card Set 19.0 - Terminator

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-10 $QUIt Al4,6X Keyword indicating the last data of the EQMOD module has

been read. The $QUIT card may include comments following

the fourth column.




6.3.5 SUMMARY OF CARD INPUT DATA

Requirements Reference
or Function ; Key Words and/or Variables Card Format Card Set (CS)
L | $EQMod A4,6X% 1.0
| TITLe Title Card A4,6X,7A10 2.1
c Comment Card A2,A8,7A10 2.2
| Problem Size SIZE NDOF NPAN NFREQM A4,6X,315 3.0
' Output Options QUTPut  IUTEOM  IFLEOM  dummy IUTLOD  IFLLOD A4,6X,A7,3X, 4.1
‘ 15,5X,A7,3X,15
| Print PRINt INPUL MATRIX  OPTION  ITHF 2(A4,6X), 4.2
| Input Options 10X,104,15
Print PRINt QUTPut  MATRIX  OPTION  ITHF 2(Ad,6X), 4.3
| Output Options 10X,10A,15
| Indicator for Body SYMMetric A4,6X 5.0
Axis and Derivatives ANTIsymnetric}
Equations of Motion Data
$EOM INFOM  INEOMF | DYLOFLX A ,6X,A7,3X 6.0
NULEOMy A4 ,36X
15 :
> \8I5
Derivative Data DERIvative FROM {%ﬁ—g NCS INDUN  QUEBAR VT A4 ,6%,10X A4 ,6X, 7.
IAPE 215,2€10.0
Column Numbers of IXcoL 1Zc0L {ITCOL
Rigid Body Freedoms {IYCOL} {IPCOL} iscoLf  1DCOLx 1415 7.2
Derivative { CBAR}
Constants Ax Az ALPHAT  SW B CLIR CLIE 7E10.0 7.3

LS




o
[+-]

Requirements Reference
or Function Key Words and/or Summary Card Format card Set (CS)
SDSStp SDINDX SDDATA 1SCAS 3A10,15 7.4
FLEXSTAB Aero Data
NAMECST 7A10 7.4.2
Rigid Derivatives [CLU cDU ’ [CMUREF' lCLA CDA CMAREF‘ 6£10.0 751
CYB CLBREF CNBREF CYP CLPREF CNPREF : Teee
Elastic Increment
if SYMM on CS 5.0 CLUE CDUE dummy CLAE CDAE 2E10.,10X,2E10. 7.5.2
Rigid Derivatives CLQ} cDQ CMQREF}
CYR CLRREF{ | CNRREF 3E10.0 7.6.1
Elastic Increment
S SYMM on ce e o | CLGE CDQE 2€10.0 7.6.2
Control Surface ‘CLDI} { CDDI l ‘CMDREFI}
Rigid Derivatives CYDI CLDREFI CNDREFI 3E10.0 7.7.1
Elastic Increment CLDE CDDE
if SYMM on €S 5.0 I ! 2£10.0 7.7.2
Rigid Unsteady
<. . CLADOT CDADOT CMADRF
Derivatives ‘CYBDOT} ‘CLBDRF‘ ‘CNBDRF 3E10.0 7.8.1
Elastic Increment CLADTE CDADTE 2£10.0 7.8.2

if SYMM on CS 5.0




6S

Requirements

!

!

Reference

or Function Key Words and/or Summary Card Format Card Set (CS)
Scale Matrix SCALe -MATNAM  IFREQ dummy SCLMAT 2A10, 15,5X%, 8.0
Elements £10.0 "
DYLOFLX 4 ,6X,A7, [A4,11%)]
SENSor INSEN INSENF NLDSEN { } »04, ,‘ » 9.1
NULSEN, 3x,215 | 315
Sensor Data MIBAr
[F’ Ar, INROW IUTROW INROW JUTROW = = = = =« =« = =« = = - Ad4,6X,1215 l 9.2
M3BAr |
END sensor A4 ,6X w[ 9.3
SAs A4,6X 10.1
SAS Data
1SAS JSAS M1 M21J M31J 215,3£10.0 10.2
END sas A4 ,6X 10.3
Replace Matrix Ad,6X,A10,I15,
Elements REPLace  MATNAM IFREQ dummy IROW JCOL AlJ 5%.215,£10.0 1.0
Increment Matrix A4,6X,A10,15,
Elements JINCRement MATNAM IFREQ dummy IROW JCOL AIJ 5X.215,E10.0 12.0
Body Axis : ICOLX‘ 1C0LZ 1COLT
Transformation sooveis 60} {1GOF)  [icols)  cumy  Aewa soowT Pa16X 315,5K, 13.0




Requirements
or Function

Reference

Key Words and/or Data Card Format Card Set (CS)
Loads Equations Data
$LOAds  INLOD  INLODF  NLpou | DYLOFLX A% ,6X,A7,3X,
NULLOD, A 14.0
215,453
715
Matrix Scalar SCALe MATNAM IFREQ dummy SCLMAT 2A10,15,5% 15.0
E10.0
Replace Matrix A4,6X,A10,15,5X%,
£l omorts REPLace MATNAM  IFREQ dummy IROW JCoL AL 218 £10.0 16.0
Increment Matrix INCRement MATNAM  IFREQ dummy IROW JeoL Al A4 ,6X,A10,15,5X, 17.0
Elements _=
215,E10.0
QR Data
$OR IUTQR IFLOR A4 ,6X,A7,3X,15 18.1
QR-EOM DYLOFLX
Input Matrices QREOM INEOM INEOMF [NULEOM , A4,6X,17,3X,15, 18.2
I A4, 36X
815
{wagner Option WAGNer  AQR BOR ALQR BEQR A4 ,6X,4E10.0 18.3
Root Option ROOT A4 ,6X 18.4
| Time Option TIME : A4 ,6X 18.5
|QR-Loads Equations |QRLOad  INLOD  INLODF  NLDGR | piLOfL¥ AG,6X,A7,3X,215,|  18.6
i Input Matrices 1 A4,3X
: 715
| SQUIt
| A4 ,6X 19.0




8.4 MAGNETIC FILES INPUT DATA

The input matrices to the L219 (EQMOD) program will normally be obtained from
magnetic files (tape or disk) prepared by the programs; Equations of Motion, L217
(EOM), and Load Equations, L218 (LOADS). A magnetic file prepared by FLEXSTAB
with the DYLOFLEX modifications will also be needed when using the stability
derivatives generated in FLEXSTAB. However, because the EQMOD output magnetic
files are in the same format as the input files, it is possible for EQMOD to use as input
the magnetic files generated by a previous execution of EQMOD. In addition, any user
generated magnetic files(s) may be used as input into EQMOD if they have the required
format.

The format for the equations of motion input magnetic file is shown in figure 8. The
format for the load equations input magnetic files is shown in figure 9 for the load
equations, and in figure 10 for the sensor equations (which are themselves a specific
type of load equation).

All EOM and LOADS matrices are in the READTP/WRTETP format.l

The stability derivatives generated in FLEXSTAB are written on the SDSSTP magnetic
file, Before executing L219 (EQMOD), this data must be copied by EQMOD onto two
magnetic files, SDINDX and SDDATA. SDINDX contains the FLEXSTAB index matrix
and SDDATA the FLEXSTAB stability derivative data shown in figure 11.

6.5 OUTPUT DATA
6.5.1 PRINTED

All card input data will be printed as read and interpreted. Optionally the following
data may be printed:

1. Matrices read from files

2. Matrices written on output files.

6.5.2 MAGNETIC FILES

EQMOD will write as many as three magnetic files containing meodified equations of
motion, modified load egquations, and a file for the Linear System Analysis program,

QR, which may contain the characteristic equations for the modified equations of
motion and/or the modified equations of motion and load equations.

1R. E. Clemmons: Programming Spectfications for Modules of the Dynamic Loads Analysis System
to Interface with FLEXSTAB. NASA contract NAS1-13918, BCS-G0701 {internal document),
September 1975.
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SIZE

NDOFI x NDOFI
NDOFI x NDOFI

NDOFI x NDOFI

NFREQM x 1

NDOFI x NDOF]

NDOFI x NDOF!

NPANI x 1
NDQFT x 1

NDOFI x NPAN

where;

[Tl}
[qz}
[M;]
{fregm}
[T»]
[Ms]
{ffl
*{C.) ‘
*[§]
| Repeat
(M1, >k=2, NFREQM
|| NFREQM > 1
End-of-File

—

—

NDOFI - MNumber of degrees of freedom input

NFREQM -
NPANT -

Number of frequencies
Number of panels input

* Note: If {fregm} exists then C, and & will be complex

Figure 8. — Equations of Motion Input File {EQOMTAP)



SIZE

30x 1 {Header}
NLDI x NDOFI [ﬁ?]
NLDI x NDOFI [ﬁi]
NLDI x NDOFI [M5]
]
NLDI x NPOFI [m. ]
]
NLDI x NDOFI [¥5]
NLDI x 1 “{C)
NLDI x NPANI *{ 4]
[0,
M2,
r-aﬁﬁﬁ__H_1 Repeat
1 | > k=2, NFREQM
(T}, *L31 1 1t NFREQM>]
End-of-File
where; \N‘_
NLDI - Number of loads input
NDOFI - Number of degrees of freedom input
NPANI - Number of panels input
NFREQM - Number of frequencies
NLOD - Number of load sets

* Note: If NFREQM > 1

then C, and § will be complex

Figure 9. — Load Equations Input File (LODTAP)

Repeated
for each
lToad set
{(NLOD)




SIZE

\
30x 1 {Header}
NSENS x NDOFI [M,]
- | Repeated
NSENS x NDOFI [M;] for each
load set
_ (NLOD)
NSENS x NDOF! [(M;]
J
End-of-File
\\
~

where:
NSENS - Number of sensor lopads

NDOF1 - Number of degrees of freedom input
NLOD - Number of load sets

Figure 10. — Sensor Equations Input File (LODTP2} from the AVD Loads Path



FLEXSTAB
name Engineering symbol
— -
3rigid 3elastic "rigid Telastic Cirigid Cietasti
incr ncr ¢ incruc
a. . a . T r ; c c
rigid elastic rigid elastic 'rigid lelastic
incr incr ;
incr
C"& C“& C"E c"& - c”tS c"&
3igid Aetastic Mrigid Melastic ciri id cielastic
iner : incr g incr
where i ranges over the number of antisymmetric active control surfaces, i=1,n-2
(CONTRL)-S Cc C c C
L'se - LJse Lac L5c
rigig elastic iﬂg‘ld ie‘ﬁsiic
incr incr
(.‘.D5 CD& CDB CDB
rigid Celastic “irigid “letastic
inecr incr
Cmcs C"’a C"’(S Cmé
Erigid eelastic clfigld cielastic
incr incr
where i ranges over the number of symmetric active controls, i=1,n-1
N ]
{CSNAMES)A AILERON RUDDER Acname' ..... ACnamen
where i ranges over the number of antisymmetric active controls, i=1,n-2
ICSNAMES)S ELEVATOR Acnamei ..... Acnamea
where i ranges over the number of symmetric active controls, 1=1,n-1
Figure 11. — General Form of Derivative Matrices on Input File (SDSSTP)
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FLEXSTAR

name Engineering symbaol
(STATIO-S | [C_ . A CiA CL C. CLA CLA
1rigid elastic rigid Uelastic ®rigid Celastic  Arigid Qelastic
incr incr ncr ingr
rigid Uelastic @rigid Zelasnc Rrigid Belastuc
incr incr. incr
0 0] c Cm;\ Cm Cm CmA CnA
rigid Uelastic o‘rigicl Celastic Arigid Qelastic
iner iner. incr_J
- c. c C
{STATIC)-A Vg C\"ﬁ Cye. CY{J‘ Y{,\ Yf\
rigid elasuc righd elastic rignd elastc
incr incr iner
Ce Co Cen Cea Con Con
‘Brigid I3elastic Prigid Pealastic rigid elastic
incr incr incr
Cn Can Can Can ] Cnp_ ) Cn»‘\ _
ﬁrigid Betastic Prigid Pelastic rigid elastic
incr incr incr
L.
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Figure 71. — {Concluded)
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The files of the modified equations of motion and loads equations have the same format
ad the input formats shown in figures 8 and 9 except that the size of the modified
matrices may be larger by:

NDOF =NDOFI + NDOFNggn + NDOFnsAS

. where:
NDOF = The total number of degrees of freedom
NDOFI = The number of degrees of freedom input
NDOEysEN = The sensors number of degrees of freedom
NDOFNsAS = The SAS number degrees of freedom

The default name is EQEOM for the modified equations of motion file and EQLOD for
the modified load equations file.

The QR equations output magnetic file format is shown in figure 12.

All matrices contained on these output magnetic files are written by the WRTETP
subroutine.

6.6 RESTRICTIONS

The following restrictions apply only when generating matrices for QR. These
restrictions are due to the limitation of the QR program (ref. 6).

® No gradual penetration is allowed when forming matrices for the time history
solution in QR.

®  No multi-forcing-function is allowed for a QR time history solution.
® Only first frequency used (EQMOD restriction).
& Only one load set used (specified via card).

6.7 DIAGNOSTICS
6.7.1 FATAL ERRORS

All fatal errors detected by L219 (EQMOD) will result in the printing of a diagnostic
error message. These. messages are self-explanatory and are of the following format:

Fxxkiiie FATAL ERROR (nnnnn) DIAGNOSED WHILE EXECUTING ROUTINE

(routine name).
Any additional error message follows.
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NDOF
NDOF
NDOF

NDOFL
NOOFL
NDOFL

NDOFL

ZE
x NDOF (5]
x NDOF [s°]
File generated
2
x NDOF [s?] r for Wagner option
x NDOF [s']
x NDOF [s°]
: J
End-of-File
x NDOF [S*]
File generated
t
x NDOF 5] f for Root option
x NDOF {s-]
End-of-File| ~
;
x NDOFL [s?]
1
x NDOFL (s') File generated
+ NDOFL (501 for Time option
X 1 [C3]
, J
End-of-File
where:

NDOF - Number of degrees of freedom
NDOFL - NDOF + NLD
NLD - Number of loads

Figure 12. — QR Eguations Output File (QRTAP)



where nnnnn is a diagnostic number from the following list:

Error

number

WO O =1 h W o W N =

10
11

12
13
14
15
16
17

18

19

20
21
22

23
24
25

26

Description

$EQMOD is not the first card input data

Error returned from FETAD (see FETAD error message)

Keyword (aaaaaaaaaa) with code number (nnnnn) is not recognized.

Total number of degrees of freedom (nnnnn} not within range of 1 and 100.
Total number of panels (nnnnn) not within range of 0 and 50.

Number of frequencies (nnnnn) not within range of 0 and 20.

Output file name (aaaaaaaaaa) for modified EOM matrices, invalid.
Cutput file name (aaaaaaaaaa) for modified LOADS matrices, invalid.

The requested number of (LOADS/EOM/QR) sets (nnnnn + 1) is greater
than the maximum allowed (nnnon).

READTP error number {nnnnn) returned. {See section 6.7.3.)

Dimension on first matrix of DYLOFLEX (EOM/LOADS) input tape is not
30x 1.

(EOM/LOADS) scale data must be grouped together.
(EOM/LOADS) replacement data must be grouped together.
(EOM/LOADS) increment data must be grouped together.
Body axis data already defined.

Keyword (aaaaaaaaaa) is not recognized as a SENSOR data.

Sensor matrix (aaaaa) not grouped in increasing (M1BAR,M2BAR, M3BAR)
order.

(keyword) matrix name (aaaaa) not recognized; (keyword) matrix name
(aaaaa) and frequency number (nnnnn) must be grouped together.

QR option not specified; must have one of the following (WAGNER,
ROOT,TIME).

Field length requested is too small for this problem.
WRTETP error number (nnnnn) returned. {See section 6.7.4.)

Matrix (aaaaaaaaaa) frequency (nnnnn) is greater than number of
frequencies (nnnnn).

Derivatives input; VT, B, or CBAR contain zero.
Error returned by FETCHM while reading matrix (aaaaaaaaaa).

Control surface name specified (aaaaaaaaaa) does not equal to names read
from SDSSTP (list of names follow).

QR time option; PHI-TILDA OR PHI-TILDA-BAR (azaaaaaaaa) has more
than one column.
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6.7.2 WARNING MESSAGES
All warning messages will be self- explanatory and printed in the following format:
wwmkmEtrr WARNING MESSAGE (nnnnn) DIAGNOSED WHILE EXECUTING

ROUTINE {routine name).
(Any additional warning message follows.)

where nnnnn is a warning message number from the following list.

Warning
number Description
1 The maximum number of title cards (nnnnn) has already been read. The
above title card is treated as a comment.
2 End of record encountered before $QUIT card. $3QUIT card assumed.

6.7.3 READTP ERROR CODES

_Code Description
0 No errors detected.
2 File or matrix skipping code is negative.
3 Dimensioned row size = Q.
4 Dimensioned row size is less than the actual row size.
) Name specified does not match the matrix name on the file.
6 NROWS*NCOLS = 0 or greater than the buffer limit of 10000.
7 End-of-file read instead of the two-record matrix.

1000+I Error discovered trying to skip files. I files remained to be skipped when an

end-of- information {EOI) was encountered.

3000+I Error discovered trying to skip matrices. I/2 matrices remained to be
skipped when an end-of-file (EOQOF} was encountered.

6.7.4 WRTETP ERROR CODES

Code Description
o No error detected.
2 File on matrix skipping code is negative.
3 Dimensioned row size = 0.
4 Dimensioned row size is less than the actual row size.
6 NROWS*NCOLS = 0.
1000+1 End-of-information (EOD was read trying to skip files. I files remained to
be skipped.
3000+1 End-of-file (EOF) was read trying to skip matrices. I/2 matrices remained to

be skipped.



7.0 SAMPLE PROBLEM

The sampie problem in this section consists of three small test cases (numbers 2, 3 and
5) formed to exercise most of the options available in the program. The size of these test
cases allowed them to be easily checked by hand caleulations.

Test Case 2:

This sample problem assumes that the matrix ceefficients for the equations of motion
were generated by L217 (EOM) for a gsix degree of freedom system. The load equation
coefficients are assumed to be read from a file LODTAP that was not generated by the
DYLOFLEX system. Modifications to the equations include overwriting the rigid body
terms in the equations of motion with stability derivative data, adding sensor equations
to the system, and replacing and incrementing matrix elements. Wagner indical lift
growth effects shall he included, and a data tape for QR rooting and time history
analysis shall be generated.

Test Case 3:

This sample problem assumes all load and equations of motion coefficient matrices were
generated by DYLOFLEX programs for a four degree of freedom system. Modifications
include a scaler multiplication of My, a transformation of the equations into the
body-fixed axes, and replacement and incrementation of certain load matrix coefficients.

Test Case 5:

The last sample problem deals with a seven degree of freedom system. Here the
equations of motion matrix coefficients will be modified by overwrifing the rigid body
elements with stability derivative data. Sensor and stability augmentation equations
wlill also be added.

Beeing Commercial Airplane Company
P.O. Box 3707
Seattle, Washington 98124
May 1977
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$EQMOD
TITLE

C

SIZE
QUTPUT
PRINT
PRINT
SYMMETRIC
C

$EOH

C
DERIVATIVE
1

M3iBAR

END SENSOR
REPLACE
INCREMENT
INCREMENT
C

$LOADS
SCALE

$QR

QREQH
ROOT

4QR

QREOM
TINE
QRLOAD
$QR

QREQN
WAGNER
SQUIT
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TEST CASE 2
CHECK CASE 2y MODIFY DERIVATIVES FROM CARDS, ADD SENSORS, QR
6-DEGREES OF FREEUOM  Z-FREQUENCIES

[ 0 2
EQECOM 2 1 EQALOD2 1
INPUT MATRIX FREQUENCY 2
ouTPUT MATRICES LCHANGED

EQ. OF MOTIOUN ASSUMED TO HAVE BEEN GENERATED BY L217{EDOM}
EOMTAP 20YLOFLX
ONE CONTROL SURFACE AND LSE UNSTEADY DERIVATIVES

5 FROM CARD 1 1 2.0 10.0
2 4
.1 2.5 1.0 3.0
1.0 1.0 T.0 1.0 10.0
el —.l -1.0 1.0 -2.0
3.0 1.9
-1.0 1.0
1.0 6.0
-1.0 ~1l.0
3.0 5.0
2.0 0.0
SENSDOR DATA FROM L218(L0ADS)
LOoDTP 2 2 30YLOFLX
1 % 2 &
M1l 3 3 200,
H3 3 3 10.
M3 3 4 5.
LOAD TAPE GENERATED OUTSIDE OF DYLDFLEX SYSTEM
LODTAP 1 2 0 Q 3 4 5 8 0
M4&BAR 2 2.0
QRTAP L
EQEQM 2 DYLOFLX
QRTAP 2
EQEQOM2 DYLDFLX
EQLOD2 OYLOFLX
QRTAP 3
EQEQM2 OYLOFLX
5 -5 1.0 2.0

[}
(]

9

[ N R R R N - N CIT N S E e
m

L O O T T

COEWIWN O =D WN —~ O~
O

. e
mXmmu®

N Ry

TeTalR

-
-
[a¥]
m

Te+8.1R
T.8.2€



$EQMOD TEST CASE 3
YITLE CHECK CASE 3,

SIZE 4 2

ouTeuT TESTs 1 DUMMY
PRINT ourTpPUT MATRICES ALL
SYMMETRIC

SEOM EONTAP 2DYLOFLX
SCALE LD} 2.0
BOOY AX1S 1 2 3 1.0
$LOADS LODYAP 2 2DYLOFLX
REPLACE M3IBAR 1
REPLACE M4BAR 2 1

INCREMENT M38AR
$QUIT

2

&
4
4

MODIFY EOM AND LOADS

10.0

10.0
5.0
3.0

1.0

3.0
4ol
4.3
5.0
6.0
8.0
13.0
14.0
1L6.0-1
16.,0-2
17.0
19.0
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$EQMOD TEST CASE 5 ' ' 1.0

TITLE CHECK CASE 5, MODIFY DERIVATIVES FRCM CARDS AND ADD SAS AND SENSORS
SIZE 1 2 . 3.0
ouTPUT EQEGCM 1 EQLOD 1 4~1
PRINT INPUT MA TRIX AtL 442
PRINT QUTPUT MATRIX ALL 4.3
SYMMETRIC ) ) 5.0
$EQM EOMTAP 1 1 0 1 1 1 1 0 0 6.0
DER IVATIVE FROM CARDS 1 0 2.0 10.0 Tel
1 2 4 7.2
o ol 2.5 1.0 3.0 o2 7.3

4.0 1.0 1.0 7.0 1.0 10.0 T«5.1R
1.0 .1 -l -1.0 1.0 ~2.0 7.542E
2.0 3.0 7.0 T.6.1R
el -1.0 1.0 Teba2E
4.0 1.0 6.0 TaTalP
=20 -1.0 -l.0 7.7.25
SENSOR 3 0 1 1 9.1
M2BAR 3 5 9.2-1
M3BAR 1 6 9.2-2
END SENSOR 9.3
SAS 10.1

7 7 1.0 10.2-1

7 -] -1.0 10.2-2

7 6 2.0 10.2-

4 7 1.0 2.0 3.0 10.2-
END SAS 10.3
$QUIT

74

frser
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*

* PROGRAM L219A2 VERSION JUNE 29,77 NOW RUNNING.
* THE PROGRAM [S PART OF THE DYLOFLX SYSTEM

L DEVELOPED FOR NASA UNDER CONTRACT NAS1-13918.
*
]
| ]
]

*
&
*
*
DATE OF RUN {S 77/11/0S. *
TIME OF RUN IS 09.46.18. *

*

*

S EIERERERE RS R RS R GG ER GRS LR R 2R kS bk E R 2L &

{ SEQMOD TEST CASE 2 ' ' 1.0

(TITLE CHECK CASE 2, MODIFY DERIVATIVES FROM CARDSy ADD SENSORS, QR TP
(c . 6-DEGREES OF FREEDOM 4 2-FREQUENCIES 2.1A

(S1Z€ 6 0 2 : 3.0

PROBLEM SI1ZE
NDOF = 6, TOTAL NUMBER OF DEGREES OF FREEDOM.

MDA - n TATAL MUIMAED NE DAMEL C
Ny any - Ve TUNAaL ITUNMDLN UT T ARivLLJs

NFREQM = 2, NUMBER OF FREQUENCIES.

(OUTPUT EQEOM2 1 EQLOD2 1 . 4.1

cuUuTPUT TAPES

IUTEQOM = EQEOM2 e TAPE NAME FOR MODIFIED EOM MATRICES.
IFLEQM = 1; FILE POSITION NUMBER OF TUTEQM,

IUTLOD = EQLOD2 TAPE NAME FOR MODIFIED LOADS MATRICES.
IFLLOD = ly FILE POSITION NUMBER OF fUTLOD.

(PRINT INPUT MATRIX FREQUENCY 2 4.2

INPUT MATRICES PRINT OPTION.
INPR = 2+ IF INPR = -999, PRINT ALL INPUT MATRICES.
= 0y NO INPUT MATRICES PRINTED.
= Ny MATRICES OF NTH FREQUENCY ONLY PRINTED.

{PRINT ouTPUT MATRICES CHANGED 4.3

OUTPUT MATRICES PR INT OPTION.

IUTPR = 999, [F IUTPR = -999, PRINT ALL OUTPUT MATRICES.
= 0y NO OUTPUT MATRICES PRINTED.
= Ny MATRICES OF NTH FREQUENCY ONLY PRINTED.
= 999, PRINT ONLY MOOIFIED MATRICES.

(SYMMETRIC 5.0
(c EQ. OF MOTION ASSUMED TO HAVE BEEN GENERATED BY L217¢(EOM) 2.18
( $EOM EOMTAP 2DYLOFLX 6.0

EQUATIONS 0 F MOTI ON

INEOM = EOMTAP + EOM INPUT TAPE NAME.

INEOMF = 2y FILE POSITION NUMBER OF [NEQM,
(C ONE CONTROL SURFACE AND USE UNSTEADY DERIVATIVES 2.1C
(DER IVATIVES FROM CARD 1 1 2.0 10.0 T.

DERIVATIVES FOR SYMMETRIC ANALYSIS.
fvoL = CARD, INPUT VOLUME

NCS = le NUMBER OF CONTROL SURFACE
INDUN = 1, UNSTEADY DERIVATIVE INDICATOR
QUEBAR = .200E+01, DYNAMIC PRESSURE
VT = L100E+02, VELOCITY (TRUE AIR SPEED)
COLUMN NUMBERS OF RIGID B0DY FREEDOMS
IXCOL = 0y COLUMN OF X FREEOOMS
1ZCOL = 1 COLUMN OF 2 FREEDOMS
ITCOL = 2y COLUMN OF THETA FREEDOMS
COLUMN OF DELTA CONTROL SURFACE FREEDOMS FOLLOW

4

- Y ap W
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CONSTANTS ASSOCIATED WITH DERIVAYIVES

XREF = Q. » X-COORDINATE OF MOMENT REFERENCE
LREF = Cea » Z-COORDINATE OF MOMENT REFERENCE
ALPHALl = (1T75E-02s IG ANGLE OF ATVACK

SW =  L250E+Cl, WING REFERENCE AREA

CBAR = o1Q0E+01, REFERENCE CHORD

CLIR = «3C0E+0L, RIGID STEADY STATE DERIVATIVE
CL1E = Q. v ELASTIC STEADY STATE DERIVATIVE

STEADY STATE DERIVATIVES FROM CARD

CLU = .400E+0l, C—L-LHAT-RIGID
COU = .100E+01, C-D-UHAT-RIGID .
CHMUREF = ,100E+01y, C-M-UHAT-RIGIO-REF
CLA = .TQOE+01, C-L-ALPHA-RIGID

COA = .100E+0l, C-D~ALPHA-RIGID
CMAREF = .100E+02, C-M-ALPHA-RIGID-REF
CLUE = .1COE+0l, C-L~UHAT-ELASTIC
CDUE = «l100E+00y C~D—UHAT-ELASTIC
CLAE = -.100E+0l, C-L-ALPHA-ELASTIC
COAE = .100E+Ol, C-D-ALPHA-ELASTIC
CLQ = .200E+01, C-L-QUEHAT-RIGID
CDQ = .300E+01, C-D-QUEHAT-RIGID
CMQREF = .TO0E+0l, C—M-QUEHAT-RIGID-REF
CLOE = .100E+00, C-L-QHAT-ELASTIC
COQE = -.100E+01, C-D-GHAT-ELASTIC

CONTROL SURFACE DERLVATIVES

CLD (C—~L-DELTA-RIGID) FOLLOWS
«400E+01]

CDD (C—~D-DELTA-RIGID) FOLLOWS
«100E+01

CMDREF (C—N-DELTA-REF) FOLLOWS
«600E+01

CLDE (C-L-DELTA-ELASTIC) FOLLOMWS

-«20CE+CL

CDDE (C—-C-DELTA-ELASTIC) FOLLOWS

-.100€E+01

UNSTEADY DER IVATIVES
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CLADOYT = .200€E+01y C-L-ALPHA-DOT-HAT-RIGIOD

CDADOT = .300E+01, C~D-ALPHA-DOT-HAT-RIGID

CMADRF = +500E+01y C-M-ALPHA-DOV-HAT-RIGID-REF

CLADTE = O. ¢ C-L-ALPHA-DOT-HAT-ELASTIC

CDADTE = 0. s+ C~D—ALPHA-DOT-HAT-ELASTIC
(C SENSOR DATA FROM L218(LOADS)
({ SENSOR LOOTP2 2 3DYLOFLX 9.1

INSEN = LODTP2 » SENSORS INPUT TAPE NAME.

INSENF = 2y FILE POSITION NUMBER OF INSEN,

NLDSEN = 3, NUMBER OF LOADS ON SENSOR TAPE.
MATRI X IN QUT
(M3BAR 1 S 2 6 9.2
(END SENSOHR 9.3
{REPLACE M1 3 3 200. 11.0
( INCREMENT M3 3 3 10. 12.0-1
( INCREMENT M3 3 4 5. 12.0-2
(C LOAD TAPE GENERATED COUTSIDE OF OYLOFLEX SYSTEM 2.1E
($LOADS Loorar 1 2 0 0 3 4 S 8 0 14.0

L OCADS EQUATION

- o W o



QR

QR

(SCALE
{ sQR

(QRECH
{RODT

RO
{ SOR

{QRECM
{TIME

T1

(QRL 0AD
($QR

{OREM
{WMAGNER

H A

{$QUIT

INLOD = LOODTAP ¢ LOADS ENPUT TAPE NAME.
INLODF = 1y FILE POSITION NUMBER CF 1INLCD.
RLDOY = 2o NUMBER OQF QUTPUT LOADS.
KM4BAR 2 2.0
QRTAP 1
QR
[UTQR = QRTAP v TAPE NAME FOR QR HMATRICES.
IFLQR = 1o FILE POSITION NUMBER QF JUTQR.
EQEQM2 OYLOFLX
ov OPT1ON.
QrTAP 2
QR
IUTQR = QRTAP » TAPE NAME FOR QP HATRICES.
IFLQR = 20 FILE POSITION NUMBER OF IUTQR.
EQEOM2 DYLOFLX
ME 0P TIORWN.
EQLOD2 DYLOFL X
ORTAP 3
QR
[UTQR = QRTAP + TAPE NAME FOR QR HATRICES.
[FLQR = 3¢ FILE POSITION NUMBER OF TUTQR.
EQEOM2 DYLOFLX
-5 <5 1.0 2.0

GNER OGFTULON

AQR = 5COE+00, WAGENR FUNCTION: §.
BQR = .S00E+00, WAGENR FUNCTION: Ba
ALQR = ,100E+0l, WAGENR FUNCTION. ALPHA.
BEQR = L200E+0l; WAGHER FUNCTION. BETA.

15.0
18.14

18.24
18.4%

18,18

18.28
1845

18.&
18.1C

18.2C
18.3

19.0

T1




E QM MATRIX EQUATTIONS
TITLE CHECK CASE 2.+ MODIFY OERIVATIVES FROM CARDS: ADD SENSORS, OR TP
I NPUT mATRICES FREQUENLY 1
SENSQOR

v —m=—  MATRIX M2BaR OIMENSIONED ax 4)

fROW 1 C. e 0. 0.

ROW 2 0. Q. Oe a.

ROW 3 «1000F+0] -.1000E+02 -3000E+01 O.

———————— MATRIX M3BAR DIMENSIONED 3x 41

ROW L «1000E+Q1 -1200E+02 +» BOOOE+QC Q.

ROW 2 «1000E+01 -.6000Et+01 « S000E+D0 D,

ROuW 3 0. 0. Qe 0.
ouUuTPUT MATR ILCES FREQUENCY 1

--------- MATRIX M DIMENSIONED | 6X 6)
ROW i Ce O. Q. Qe Oe 0.
ROW 2 O. Ca Q. 0. Qe 0.
ROW 3 O. e « 2000E+03 0. 0. 0.
ROW 4 0. Oe Q. GC. g. 0.
RDW 5 D. 0. 0. 0. ~.1000E+01 D,
RDW 6 [+]% 0. O. 0. Oa —= 1000E4+01L
—— - MATRIX M3 OITMENSEONED ( 6X 6)

ROW i +1000E+04 Q. Qe 0. 0. 0.
ROW 2 O. -4000E+05 Q. Qs C. 0.
ROW 3 0. 0. « 2000E+ 02 «3000E+0L 0. O.
ROW 4 0. G. 0. -1500E+02 0. 0.
ROW 5 +1000E+0Q1L «1200€+02 « BQOOE+ 00 Q. Q. Q.
ROW & =1l0COE+Ll -.50C0E+D] +« 5000E+00 O, Ne D.
——— MATRIX FREQM DIMENSIONED ( 2x 1)

ROW 1 0.

ROW 2 - 20G0€+01
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ITNPUT HATRLICES FREQUENCY 1

oyYyTPAULUT MATRICES FREQUENCY 1

= MATRIR Mg DIHENSIONED { 6Xx 6

ROW L [+ «349TE2+02 + 5000E+ 01 «2001E+02 0. Oe
ROW 2 0. -4999E+02  ,8000£+0l -.3000E+02 0. 0.
rOW 3 0. <4000E+01 «2000E¢+01 =-,1000E¢01 O. Oa
ROW 4 0. o1000E+D1 -, 1000E¢0L -4000E+0Y 0. 0.
ROW 5 0. 0o 0o 0q 0. 0.
ROW & (1] (4 S 0. 0o O. 0.
————————-— HATRIX 15 DIMENSIONED [ 6X &)

ROW 1 23501E¢0Q) «1003E+01 s TOOCES 01 -3000E¢01 O, D.
ROM 2 ~.5000E+01 -~ .3000E4¢01 +4Q00E+ 0L «2000E+01 0O, . (L
ROW 3 - A00DE+DQ -1000E+01 « 2000E+01 <1000E+01 0o . L+ I8
ROW 4 ~-.1000E+00 o 1000E£01 « 100GE2 0] «2000E:0)1 O. 0,
ROW 5 0. [+ 0. 0. (18 [+ 18
ROW & 0. 0. 0. Oo 0. 0.
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INPUT

e

ROW 1
ROW 4
ROW 3
ROW 4

ROW i
ROwW 2
ROW E
RO 4

et

oW
ROW
ROW
ROW
ROwW
ROW
ROW
ROW

[+ - B IR+ RN R PR U

curprPuUT

80

MATRII

MATR I X

0.
C.
o.
0.

HMATRIX

«30COE+0Q0
=+60C0E+D0
=.5000E+00
~.2000E+00

MATRIX

- 3000E+Q0
«1000E+QQ
—-+b0QCE+0D
-« 2000E+00
-+500QE+00
-1000€+00
-.2000E+Q0
-30Q0E+00

M A TR

MATRIX

Q.
Q.
O.
O
0.
0.

MATRIX

«3501E+01
—«5000E+01
~«500C0E+ 00
-.2000E+00Q
0.

0.

CES

M4

~a3000E+D])
-6000E¢+0]
«5000Ee 01
«20C0E+GL

MS

«56000E+01
+«500CE+0L
-2000E#0D1
« 2000802

c3

I CES

M4

«34STE+Q2
~«4999E+02
«5000E+01
«2000E+01
0.
0o

M5

+L003Ee Q1
- .3000€E+01
«2000€+0]
+2000E+01L
Q.
Qe

FREQUENCY 2

DOIMENSTONED ¢

« 7000E+0L
«F000E+ QL
« 3000E+ Q1
-« 1J0QE+QL

DTHENSTONED (

< 5000E+ 01
- 3000E% 01
« lODOE+ DL
Q.

DIMENSIONED

FREQUENCY 2

DIMENSIONED {

« TOQ0E+OL
2 9000E+ 01
«3000E«OL
-. 1000€+01
Qo
Q.

DIMENSTONED |

«6000E+ D1
«3000E+ 01
« LGOGE« O]
Qo
Q.
Q.

X %)

«1000E+01
«1000E+01
-+ 1 O00E+G]
«»3000E+01L

4 X 4)

«4000E+QL
+3000E+01
+2000E4+01
«20Q0E+Q}

ax 11

6X &}

~2001E+02
=23000E¢02
-.1000E+01
+«3000E¢+01
0.
0.

6X 6)

-4 Q00EXG]
«3000E2 Q1L
«2000E+31
«2000E+0L
[+ )8
0.

D.
0.
0.
0.
D.
0.

Ce
Qe
Qe
Qe
Oa
Da

0.
OI
0.
0.

0.

G
0.
G.
Qe

Ce



TITLE

INPUY

ouTtTPuUT

LOADS MATRTIX EQUATI ONS

CHECK CASE 2, MODIFY DERIVATIVES FROM CARDS, ADD SENSORS,

MATRICES FREQUENCY 1

MATRITICES FREQUENCY 1

QR TP
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INPUT

ROW 1
ROW Z
82

MATRICES

MATRIX M4&BAR

FREQUENCY 1

[ %)
n
=
m
o
[
m
2'
[}
-
o)

DIMENSIONED (

«8000E+01 «4000E+01 «3000E+01

2nnneane annn ennne . nt
sOUVYUETYUL e IVUUYTTUL e JUVULT UL




INPUT MATR]
cmmmam——=  MATRIX
ROW 1 «7000E+01
ROW 2 «5000E+01
————p—m—  MATRIX
ROW 1 =«30COE+CL
ROW 2 «2C00E+01
comweo=me=  MHRATRIX
ROW i -e300GE+01
ROW 2 «1000E+CO
ROM 3 «20COE+C1
/ROW Y «20CCE+00
QUTPUT MNATR
wwemeness MATRIX
ROM t «1400E+02
ROW 2 <1000£402

CES FREQUENCY 2
M&BAR DIMENSIONED
«30006401  .2000E+01
«2000E+01 « ®000E+ 01
MSBAR DIMENSIONED
0. ~« 2000E+ 01
Oe -« 3000E+01
C3BAR D IMENSIONED (
1 CES FREQUENCY 2
M4BAR DIMENSIGNED (
«6000E+01  .4000E+0l
.4000E+01 . BOOOE+OL

2X 4)

—«1000E+01
«1000€+01

2X 4)

«4000E+01
—«1000E+01

eX 1)

2X 6)

-+.2000E+01
«2000E+0L

0.
O.

Oe



QR MATRICES GENERATED

ROOT OPTION

TITLE CHECK CASE 2, MODIFY DERIVATIVES FROM CARDS, ADD SENSORS, QR TP

—————e——e  MATRIX S*#2 DIMENSIONED 6X 6)

ROW 1 «1000E+04 O. 0. 0. 0. Oe
ROW 2 0. «4000E+05 0. O. 0. 0.
ROW 3 Q. Oe «2000E+02 «5000E+01 O. - Qe
ROW 4 O. ) Oe . «1500E+02 0. 0.
ROW S «1000E+01 «1200E+02 « 8000E+00 0. 0. Oe
ROW 6 +«1000E+01 —.6000E+01 «5000E+00 O. 04 Oe
——————-  MATRIX S**] OIMENSIONED ( 6X 6)

ROW b «3501E+01 «1003E+01 « TO000E+0OL «3000E+01 0. Qe
ROW 2 —=«5000E+01 -.3000€E+01 «4000E+ 01 «2000E+01 O. 0.
ROW 3 -+.4000€E+00 «1000E+01 «2000E+ 01 «1000E+01 O. 0.
ROW 4 -+1000E+00 «1000€+01 «1000E+01 «2000E+01 O. 0.
ROW 5 0. 0. [+ 8 0. O 0.
ROW 6 0. C. 0. Q. 0. Q.
———————— MATRIX S&*0 DIMENSTONED 6X 6}

ROW 1 0. «3497E+02 « 6000E+01 «2001€8402 0. 0.
ROW 2 Q. ~«4999E+02 «8000E+01 -.3000E+02 O. O.
ROW 3 0. «4000E+01 «2020E+03 -.1000E+01 O. 0.
ROW L 0. «1000E+01 -.1000E+01 «4000E+01 0. [+
ROW 5 0. Q. 0. 0. —-.1000E+01 O.
ROW 6 Oe Oe 0. O [1 Y -.lOOOE*Ol



Q

R M A TR

TIME SOLULTION OPTION

TITLE CHE
——————- - MATRIX Ses2
ROW 1 «1000E+C4 Q.
ROW 2 0. «4000E+05
ROW 3 0. 0.
ROW 4 0. [+
RO« 5 «1000E+01 «12006¢02
ROW 6 +1000E+01 -.6000E+01
ROW 7 «7000E¢Q] «8CO0E+ 01
ROW 8 «60CO0E+OL «3000E+01
——mee——-=  MATRIX Sew]}
ROW 1 «35C1E«Q] «1003E+01
ROW 2 ~«5000E+01 ~-.3000E+01
A0w 3 —~+4000E*0D0 ' .1000£¢01
ROwW 4 -+1000E+00 «1000E+01
RON 5 0. O.
ROW 6 0. Oa
ROW 7 ~+2000E¢01 -1000E¢01
ROw 8 «3000E+01 ~.1000E+01
—————e—we— MATRIX 5%%Q
ROW 1 0. «3497E+02
ROW 2 0. ~a%999E¢02
ROW 3 0. «4000CE+OL
R0OwW 4 0. «1000E+01
ROW 5 0. 0.
ROW 6 0. O.
ROwW 7 «8000E+01 «4000E£+01
RONW 8 «60C0E+C] +3000E+01
--------- HATRIX VECTOR
ROwW 1 -+3501€¢01
ROW 2 «5000E+01
ROW 3 -+4000E+00
ROW 4 ~+1000E+CO
ROW 5 0.
ROW 6 0.
ROW 7 -+2000E+Q1
ROwW 8 «3000€+01

ICES GENERATED

CK CASE 2,
DIMENSIONED (

O.
0.
« 2000E+02
0.
« 8000E+00
«5000E+00
«4000E+01
-« 1000E+01

DIMENSIONED (

» T000E+ Q1
« 4000E+ 01
«2000E+01
« LOOOE+ 01
0.
O.
~« L000E+ 01
—«2000E+01

D IMENSIONED

«6000E+01
«B8000€E¢ 01
«2020E+03
-+ 1000E+01
O.

0.
«3000E+0L
«5000E+01

DIMENSIONED

8x 8)

0.

[+ 28
«5000E+01
«1500E+02

0.

0.
«1000E+01
«2000E+01

8Xx 8}

«3000€+01
«2000E+01L
-1000E+01
«2000E+01

0.

0.
«5000€E+01
-«2000E+01

8x 8l
«2001E+02
~«3000E+02

-+ 1000E+01
+4000E+01

+2000E+01

ax 1)

0.
[+ 2
0.
0.
0.
0.
0.
0.

MODIFY DERIVATIVES FROM CARDS,

1000E+0)

-+1000E+01
[«

0.

ADD SENSORSy QR TP

0. 0.
0. °.
0. O«
0. Qe
0. o.
0. 0.
0. 0.
0. [+ 29
0. 0.
Oe 0.
0. - 0.
O. 0.
0., 0.
0. 0.
O. 0.
0. O.
Oe 0.
0. 0.
0. 0.
0. - 0.
0. 0.
0. 0.
-.1000€401 0.
0. -« 1000E+01



ROW
ROW
ROW
ROW
ROW
ROW

ROW
ROwW
ROW
ROW
ROW
ROW

ROW
ROW
ROW
ROW
ROW
ROW

ROW
ROW
ROW
ROW
ROW
ROW

ROW
ROW
ROW
ROW
ROW
ROW

86

VS WN -

CNSWN»

R MATRICES

WAGNER FUNCTION OPTION

Q
TITLE
MATRIX S*%4
«1000E+04 O.
O. «4000E+05
0. O.
0. 0.
0. 0‘
o. 0.
MATRIX S**3
«3000E+C4 O.
0. «1200€+06
0. O.
o. o.
o. 0.
0. O.
MATRIX S*#%2
«2005E+04 «1504E¢+01
-.7500€+01 «8000E+05
~+60C0E+00 «1500€+01
—-«15C0E+00 «1500E+01
«10C0E+QC1 «1200E+02
«1000E+01 -.6000E+01
MATRIX Ssx]
«TO002E+01 «544TE+02
~+1000E+02 -.8099E+02
~«80COE+00 «8000E+01
-«2000E+00 «3500€+01
0. 0.
0. O.
MATRIX S*%0
0. «6995E402
0. —«9998£+02
0. «8000E+01
O. «2000E+01
0. 0.
0. C.

DIMENSIONED {

0.

O.
«2000E+02

O

O.

0.

DIMENSIONED ¢

O.

Q.
«6000E+02

O.

0.

Ce

DIMENSTONED (

«1050E+02
« 6000E¢ Ol
«2430E+03
«1500E+01
« 8000E+ 00
« 5000E+00

DIMENSIONED {

«2300E+02
«2000E+02
«6070E+03
« 5000E+00
0.
0.

DIMENSIONED (

« 1200E+02
«1600E+02
«4040€+03
~+2000E+01
o.
C.

6X 6

o.

o.
«5000€+01
«1500E+02

0.

O.

6X 6)

o.

o.
«1500E+02
«4500E+02

0.

o.

6X 6)

«4500€+01
«3000€E+01
«1150€E+02
«3300E+02
O.
0.

6X 6)

«3601E+02
-+.4100E¢02
«5000E+00
«1000E+02
0.
0.

6X 6}

«4002E+02
-.6000€E+02
—+2000E+01

+8000E+0L
o.

00

G ENERATET D::

O.
o.
Oe
Oe
0.
0.

-+ 1000E+01
0.

¢

CHECK CASE 2, MODIFY DERIVATIVES FROM CARDS, ADD SENSORS, QR TP

0.. .
-« 1000E+01



CRR PO PR EREEELHSCC RN RCARER RS EN G X SR AR RS SRS ASERRENER S
PY .

* PROGRAM L219A2 VERSION JUNE 29,77 1S FINISHED.

* DATE OF RUN IS 77/11/09.

¢ TIME OF RUN IS 09.46.22.
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* *

* PROGRAM L219A2 VERSION JUNE 29,77 NOW RUNNING., *

* THE PROGRAM IS PART OF THE DYLOFLX SYSTEM *

* DEVELOPED FOR NASA UNDER CONTRACT NAS1-13918. *

* DATE OF RUN IS 77/11/09. . * S

. TIME OF RUN IS  09.46.23. *

* *

PRI SRBERRABEERENRE SRR ERAERR SR KRR KA REBER RN ARG R R R .
( $SEQMOD TEST CASE 3 1.0
(TITLE CHECK CASE 3, MODIFY FOM AND LQADS .
{SIZE 4 2 3.0

PROBLEM ST ZZE

NDOF = 4y TOTAL NUMBER OF DEGREES OF FREEDOM,
NP AN = 0y TOTAL NUMBER OF PANELS.
NFREQM = 2y NUMBER OF FREQUENCIES.
{QuTPUT TEST4 1 DUMMY 1 4l
guTPUT TAPES
IUTEOM = TEST4 + TAPE NAME FOR MODIFIED EOM MATRICES.
IFLEQM = l¢ FILE POSITION NUMBER QF [UTEOM.
IUTLOD = DUMMY » TAPE NAME FDR MODIFIED LOADS MATRICES.
IFLLOD = l, FILE POSITION NUMBER OF IUTLOO.
(PRINT OUTPUT MATRICES ALL 4.3

OUTPUT MATRICES PRINT OPTION.

IUTPR = -999, IF IUTPR = -999, PRINT ALL OUTPUT MATRICES.
= 0y NO QUTPUT MATRICES PRINTED.
= N, MATRICES OF NTH FREQUENCY ONLY PRINTED.
. = 999, PRINT ONLY MCDIFIED MATRICES.
(SYMMETRIC 5.0
(SEOM EOMTAP 2DYLOFLX 6.0

EQUATIONS 0 F MOTION

INEOM = EQMTAP o EOM INPUT TAPE NAME.
INECMF = 2+ FILE POSITION NUMBER OF INECM.
(SCALE M4 2.0 8.0
(80DY AXIS 1 2 3 1.0 10.0 13.0
BODY AXIS SYMMETRIC
ICOLX = le X- COLUMN OF ORIGINAL AXIS.
IcoLz = 2y L- COLUMN OF ORIGINAL AXIS.
IcoLy = 3, THETA-COLUMN OF ORIGINAL AXIS.
ALPHAL = «175€-01, ALPHALl, ANGLE OF ATTACK.
8ODYVT = «100E+02, VT, VELOCITY - TRUE AIR SPEED.
({$LOADS LOOTAP 2 20YLOFLX 14.0

LOADS EQUATTIGAGN

INLGD = LODTAP v LOADS INPUT TAPE NAME.

INLODF = 2+ FILE POSITION NUMBER OF INLOD.

NLOOU = 2y NUMBER OF OUTPUT LOADS.
(REPLACE M3BAR 1 4 10.0 16.0-1
(REPLACE M4BAR 2 1 4 5.0 16,0-2
( INCREMENT M3BAR 2 4 3.0 17.0
(sQuIT 19.0

- e

- s w w



EOM MATPRTX EQUATIONS

TITLE CHECK CASE 3, MODIFY EOM ANO LOADS

ouvurePurT M ATR ITICES FREQUENCY 1

—=wacemas  MATRIX M1 DIMENSIONED ( 4X 4)
ROW 1 O. 0. O. 0.

ROW 2 0. 0. 0. 0.

ROW 3 0. 0. «1000E+03 0.

ROMW 4 0. 0. 0. 0.

----- ——=e  MATRIX M2 DIMENSIONED ( 4x 4)
ROW 1 O 0. « LT45E+03 O.
ROW 2 [+ 2% 0. =« 4000E+06 0.

ROW 3 0. 0. O. 0.

ROW 4 Oe 0. 1 0.
weewmaaee  MATRIX - M3 D IMENSIONED {( &X 4)
ROW | § «1000€E+C4 O. 0. 0.

ROM 2 0. «4000E+05 O. 0.
ROW 3 0. 0. «1000E+02 O. .

ROW 4 0. 0. 0. «1500E+02
—momam—ea  MATRIX FREQM DIMENSIONED ( 2X | &)

ROW 1 0.
ROW 2 «2000E+01



OUTPUT

ROW
ROW
ROW
ROW

ROW
ROW
ROW
ROW

ROW
ROW
ROW
ROW
ROwW
ROW
ROW
ROW

@O VESWN - I S WN-

M ATRICES

MATRIX

Oe
0.
O
0.

MATRIX

«2000E+400
-«5000E+00
~+4000E+00
~«1000E+C0

MATRIX

«200CE+00
0.
~«50C0E+00
O.
-«40CQE+CO
0.
—-+10C0E+00
Oe

M4

—~e40C0E+01
«1000E+02
«80C0E+O1
«200QE+01

NS

«7000E+01
«6000E+01
«100QE+01
«10C0E+O1

c3

FREQUENCY 1

DIMENSIONED (

-~ ST9TE+02
-e4409E+ 02
-« 6070E+01
-+ 1202E402

DIMENSIONED

« TO00E+01
« 4000€+01
«2000E+01
«1000€+01

DIMENSIONED (

oX 4)

+4000E+01
«2000E+01

~+2000E+01

<8000E+01

X &)
«3000€+01
+2000E+01
.1000E+01
+2000€+01

8x 1}



ouTtTPuUT

—— s s s

ROW
ROW
ROW
ROW

ROW
ROW
ROW
ROW

———— ey - s -

ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW

VN

PN

DOV SIWN-

MATRICES F

MATRIX

0.
Oe
O
1 Y

MATRIX

«3000€+00
—«6000€+00
~-+5000E+00
-«2000E+0Q0

MATREX

«3000E+00
«1000E+00
= «60C0E+CO
«2000E+CO
-«5000E+CO
«1000€E+CO
~«2000E+00
«3000E+CO

M&

c?

«3000E+01
«6000E+01
«5000E+01
«2000E+01

«6000E+01
«5000€+01
«2000E+01
«2000E+01

REQUENCY 2

DIMENSIONED (

-+ 5295E+02
-+ 4110E4+02
-« 1T09E+02.
—-e2103E+02

DIMENSIONED |(
«6000E+ 01
«3000E+01
« 1000E+01

0.

DIMENSIONED (

4x 4)

«1000E+01
«1000E+01L
-+«1000E+01
«3000E+01

4x %)

+4000E+O1L
«3000E+01

«2000E+01

"«20006+01
8x 1

91



ouUtTPUT
ROW 1
ROM 2
ROM 1
ROW 2
ROW 1
ROW 2

92
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TITLE CHECK CASE 3, MODIFY EQM AND LOADS

2X

-2X

2X

%)

"4}

4)

MATRICES FREQUENCY 1
MATRIX M1BAR DIMENSIONED (
O. Oe O. 0.
0. O Ce. 0.
MATRIX M2BAR DIMENSIONED '(
ge og e 7818E’°2 Oe
0. 0. ‘ -+2895E¢02 O.
MATRIX M3BAR D IMENSIONED
«TO00E+01 «8000€+01 « 4000E+ 01 «1000E+02
«6C000E+01 «3000E+01 -.1000E+01 «5000E+01



ouUTPuUT MATRICES FREQUENCY 1

——-=———— MATRIX  M4BAR DIMENSTONED { 2x )
ROW 1 .8000E+01  .4000E+01 =—.7349E+0l O.

ROW 2 <6000E+01  .3000E+0l  .1552E402  .2000E+01
--------- MATRIX  M5BAR DIMENSIONED {  2X  4)
ROW 1 -.2000€E¢01 .1000E+Ol ~.l1000E+0L  .5000E+0l
ROW 2 -3000E¢01 -.1000E+01 =—.2000E+0l =-.2000E+01
——e=——== MATRIX  C3BAR DIMENSIONED {  4X 1)
ROW 1 -.2000€+4C1

ROW 2 oO.

ROW 3 «3000E+01

ROW 4 O,



QuUTPUT

ROW
_ROW

ROW
ROM

M ATR

MATRIX

«70C0E+01
«5000E+01

MATRIX

-«3000E+C1
«2000E+C1

————————  MATRIX

ROW
ROW
ROW
ROW

94

1
2
3
4

-+3000E+01
«1000E+CO
«2000E+01
«2000E+00

I CES FREQUENCY . .2 .

M4BAR DIMENSIONED (

«3000E+01 «14T6E+01
«2000E+01 «4349E+01

M5B8AR DIMENSIONED (
0. . ~e 20005"01
0. -« 3000€+01

C3BAR DIMENSTONED (

2X &)

«5000E+01
«1000E+01 -

2X 4)

«4000E+01

-« 1000E+01

4X 1)
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* *
* PROGRAM L219A2 VERSION JUNE 29,77 IS FINISHED. ¢
- OATE OF RUN IS 77/11/09. *
. TINE OF RUN IS 09.46.25. *
L *
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* *
* PROGRAM L219A2 VERSION JUNE 29,77 NOW RUNNING. *
* THE PROGRAM IS PART OF THE DYLOFLX SYSTEM *
* DEVELOPED FOR NASA UNDER CONTRACT NASi-13918. *
& DATE OF RUN IS 77/11/09. . ’ *
* TIME OF RUN IS 09.46.26. ” *
* *
* *

FTYYSZRI IR AAS LRSS 222222233222 222 23 22 222 22 222t

( $EQMODD TEST CASE 5 ' 1.0 )
(TITLE CHECK CASE S, MODIFY DERIVATIVES FROM CARDS AND ADD SAS AND SENSORS
(SI1ZE 7 2 3.0 ]

PROEBLEM ST ZE

NDOF = 7, TOTAL NUMBER OF DEGREES OF FREEDOM.
NP AN = 0, TOTAL NUMBER OF PANELS.
NFREQM = 2y NUMBER OF FREQUENCIES.
{OUT FUT EQEOM 1 EQLOD 1 4-1 )

ouTtTPuUuUT TAPES

IUTECM = EQEOM o TAPE NAME FOR MODIFIED EOM MATRICES.
IFLEGOM = 1+ FILE POSITION NUMBER OF IUTEOM.
fUTLGD = EQLOD ¢ TAPE NAME FOR MODIFIED LOADS MATRICES.
IFLLOD = 10, FILE POSITION NUMBER OF [UTLOD.
(PRINT INPUT MATRIX ALL 4.2 )

N T OPTICN.

-999, PRINT ALL INPUT MATRICES.

Oy NO INPUT MATRICES PRINTED.

Ns MATRICES OF NTH FREQUENCY ONLY PRINTED.

{PRINT ouTPUT MATRIX ALL 4.3 )

INPUT MATRICES P R
INPR = =999, [F INPR

OUTPUT MATRICES PRINT CPTION.

IUTPR = -999, IF TUTPR =999, PRINT ALL OQUTPUT MATRICES.

0, NO OUTPUT MATRICES PRINTED.

Ny MATRICES OF NTH FREQUENCY ONLY PRINTED.
999, PRINT ONLY MODIFIED MATRICES.

" (SYMMETRIC 5.0 )
{SEOM EQMTAP 1 1 0 1 1 1 1 0 0 6.0 }
EQUATIONS g F MOTION
INEOM = EOMTAP + EOM INPUT TAPE NAME.
INEOMF = 1, FILE POSITION NUMBER OF INEOM,. Siam
{DERIVATIVE FROM CARDS 1 0 2.0 10.0 T.1 )

DERIVATIVES FOR SYMMETRIC ANALYSIS.
IvVoL = CARD, INPUT VOLUME

NCS = 1+ NUMBER (OF CONTROL SURFACE
INODUN = Oy UNSTEADY DERIVATIVE INDICATOR
QUEBAR = L200E+0l, DYNANMIC PRESSURE
vT = L100E+02, VELOCITY (TRUE AIR SPEED)
COLUMN NUMBERS OF FIGID BODY FREEDOMS
IXCoL = Os COLUMN OF X FREEDOMS
IzcoL = 1y COLUMN OF Z FREEDOMS
ITCOL = 2y COLUMN OF THETA FREEDOMS
COLUMN OF DELTA CONTROL SURFACE FREEDOMS FOLLOW

4

CONSTANTS ASSOCIATED WITH DERIVATIVES
XREF = Q. » X-COORDINATE OF MOMENT REFERENCE



LREF = C. » Z-COORDINATE OF MOMENT REFERENCE
ALPHAL = L 175E~-02, IG ANGLE OF ATTACK

SW =  ,250E+Cly WING REFERENCE AREA

CBAR = L100E+0ly REFERENCE CHORD

CL1R = L3CCE¢0Ol, RIGID STEADY STATE DERIVATIVE
CL1E = ,20CE+00, ELASTIC STEADY STATE DERIVATIVE
STEADY STATE DERIVATIVES FROM CARD

cLu = L4COE+0ly C-L—-UHAT-RIGID

cou = 4lCOE+0ly C-D-UHAT-RIGID

CMUREF = ,100E+QOly C—M-UHAT-RIGID-REF

CLA =  <T700E+01ly, C~L—-ALPHA-RIGID

CDA =  L,100E+01s C-D-ALPHA-RIGID

CMAREF = ,100E+02, C-M-ALPHA-R1G1D—-REF

CLUE = o100E+01l, C-L-UHAT-ELASTIC

CDUE = o100E+00, C~-D-UHAT-ELASTIC.

CLAE = =o100E+O1ly C—L-ALPHA-ELASTIC

CDAE = L100E+01le C—D-ALPHA-ELASTIC

cLo =  ,200E+0ly, C-L-QUEHAT-RIGID

coa =  o300E+01ls C-D-~-QUEHAT-RIGID .

CMQREF = ,700E¢+01y C-M-QUEHAT-RIGID-REF

CLQE = L100E+00s C-L—-QHAT-ELASTIC

CDQE = ~,100E+0ly C-D-QHAT-ELASTIC

CONTROL SURFACE DERIVATIVES
CLD (C~L-DELTA-RIGID) FOLLONWS

«400E+Q1
CDO (C-D-DELTA-RIGID) FOLLOWS
«l00E+01
CMOREF (Q-M—-DELVA-REF) FOLLOMS
«60CE+01
CLDE (C-L-DELTA-ELASTIC) FOLLOWS
-«200E+01
CDDE (C—D-DELTA-ELASTIC) FOLLOWS
-«100E+01 i
(SENSOR 3 0 1 1
INSEN = LODTPZ » SENSORS INPUT TAPE NANME.
INSENF = ly FILE POSITION NUMBER OF INSEN.
NLDSEN = 3, NUMBER OF LOADS ON SENSOR TAPE.
MATRIX IN oOour
(M2BAR 3 5
(M3BAR 1 6
( END SENSOR
{SAS
ROW COL M1 M2 M3
( 7 7 1.0
( 7 5 -1.0
( 7 6 2.0
( 4 7 1.0 2.0 3.0
(END SAS
( SQUIT

9.2~1
Ge2-2
9.3
10.1

10.2-1
10.2-2
10.2-3
10.2-46
10.3
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ROW
ROW
ROW
ROW

———

ROW
ROW
ROW
ROW

ROW
/oW
ROW

ROW
ROW
ROW

ROW
ROW
ROW
ROW
ROwW
ROW
ROW

ROW
ROW
ROW
ROW
ROW
ROW
ROW

ROW
ROW
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PUT

S WN -

—

E

TITLE
MATRI
MATRIX Ml

0. 0.

0. 0.

0. [ 2

0. 0.

MATRIX M3
«1000E+C4 .

0. +4000E+05

O. 0.

0. 0.
SENSOR
MATRIX M2BAR

0. 0.

Oe 0.
«1CCOE+Cl -.1000E+02
MATRIX M3IBAR
«1000E+01 «1200E+0Q2
«1000E+01 -.6000E+01

0. [+ 2

M ATR
MATRI X M1

0. 0.

[+ 2 Q.

0. 0.

Oe a.

0. 0.

0. [\ ]

0. 0.

MATRIX M2

0. 0.

0. 0.

Q. 0.

0. O.
«1000E+01 -.1000€¢02

Q. 0.

Oe (¢1%

MATRIX M3
«1000E¢C4 C.
0. «4CO00E+0O5

oM MATRI X EQUATIONS

CES FREQUENCY 1

DIMENSIONED 4X &)

0. 0.
0. O
«1000E+03 0.
0. 0.

DIMENSIONED [} ] %)

0. 0.
o. o.
«1000E¢02 0.
Q. «1500E+02

O IMENSIONED 4 x 4)

Q. 0.

Q.
«3000E+01 0.

DIMENSIONED ( 3x 4}

«B8000E+00 O
«5000E+00 0.
0. 0.

1 CES FREQUENCY 1

DIMENSIONED ( 14 14

Q. 0.
C. 0.
«1000E+03 O.
0. 0.
O. 0.
Q. Os
Q. 0.

DIMENSIONED ( > 7

Q. 0.
Q. Q.
Q. 0.

0. 0.

«3000E+01 O,
Q. Ge
[+ 0.

DIMENSIONED X 71

0. 0.

0. [+ 2

0.
Oe
[+ 7%
0.
~e«1000E+01
[+ 1Y
Oe

0.
Oe
0.
0.
0.
Qe
-« 1000E+01

0.
0.

0.
O.
Q.

Q.
O
o.

O.
0.

1000E+01

CHECH CASE 5, NOblFV DERIVATIVES FROM CARDS ANC ADD SAS AND SENSORS

0.
0.

00
«1000E+01

[+ 2%
«1000E %01

Oe
[+ 1%

0.
«2000E+01

0.

0.

0'

Q.
0.



ROW 3 Oe
ROW L) Oe
ROW 5 Oe
ROW 6 «1000€+01
ROW 7 Oe

—mececees  MATRIX

ROW. 1 0.
Row -~ 2 «2000E+01

O.

0.

OCe
«1200E+02

O. ’

FREQM

«1000E+0
o. .
Ce

« 8000E+00
O.

DIMENSIONED

0.

. «1500E+02

0.
O.
0.

2x 1)

O.
0.
0.
0.

o.

o-

o.

0.
«2000E+01

Q.
«3000€E¢01

oO

0.

°O
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INPUT MATRICES FREQUENCY 1
—eemw————  MATRIX M4 DIMENSIONED ( 4X %)
ROW 1 O. ~<2000E+01 «6000E+01 «2000E+01
ROW 2 O. «5000E+01 « 8000E+01 «1000€E+01
ROW 3 Q. «4000E+01 «2000E+0l -.1000E+01
ROW 4 0. «1000E+01 -.1000E+¢Ol «4000E+0]1
————————— MATRIX MS DIMENSIONED 4X 4)
ROW 1 «2000E+00 - T000E¢01 « T000E+ 01 «3000E+01
ROW 2 -«5000E+00 «6000E+01 «4000E+ 0L «2000E+01
ROW 3 -«4000E+00 «1000E+01 «2000E+01 «l000E+0L
ROW 4 -.1000E+00 «1000E+0O1 «1000E+01 «2000E+01
————————— MATRIX c3 DIMENSIONED | 8x 1)
ROW 1 «20CCE+00
ROW 2 0.
ROW 3 -+5000€E+00
ROW 4 Oe
ROW 5 —«40C0E+00
ROW 6 0.
ROW 7 -«10COE+CO
ROW 8 g.
OouUTPUT MATRICES FREQUENCY 1
——————— MATRIX M4 DIMENSIONED 7 kA
ROW 1 0. «3497E+02 « 6000E+ Q1 «2001E+02
ROW 2 O. -—=4999E+02 « 8000E+01 ~-.3000€E+02
ROW 3 Qe «4000€E+01 «2000E+0l -.1000E+01
ROW 4 Q. «10C0E+01 =-.1000E+01 «4000€+01
ROW 5 0. 0. Q. 0.
ROW 6 0. 0. Q. 0.
ROW 7 0. O C. 0.
———————- MATRIX MS DIMENSIONED 7X 7)
ROW 1 «3501E+0C1 «5013E+00 « TOOOE+OL «3000E+01
ROW 2 -+5000E+01 -—.1750€+01 «4000E+01 «2000E+01
ROW 3 -+4000E+00 «1000E+01 «2000E+01L «1000E+0L
ROW 4 -«1000E+00 «1000E+01 « 1000€E+01 «2000E+01
ROW 5 0. 0. 0. 0.
ROW 6 0. C. C. O.
ROW 7 Oe 0. 0. O.
—_— - MATRIX c3 DIMENSIONED 16X 1}
ROW 1 -+3501E+01
ROW 2 0.
ROW 3 «5000E+01
ROW 4 0.
ROW 5 -<4000E+00
ROW 6 0.
ROW 7 ~-+1000E+00
ROW 8 O

100

Oe
Q.
0.
Oe

0.
O.

0.
Q.
0.
O.

0.

0.
0.
O

0.
0.
0.

0.
0.
O.
0.
0.
Oe
Oe

e e



ROW
ROW
AW
ROW
ROW
ROW

9
10
11
12
13
14
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INPUT

ROW

ROW 8
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MATRICES

MATRIX

0.
O
o.
0.

MATRIX

«30CCE+CO
~«6000E+00
-«5000E+00
-+2000E+00

MATRIX

«3000E+00
«1000E+00
-+.6000€+00
«2000E+Q0
—~«5000E+00
«1000€+00
—+2000E+Q0
«3000E+00

M ATR

MATRIX

«3501E+01
~+5000E+01
~-+5000E+00
~«2000E+00
0.

0.
0.

MATRIX

~«3501E+01
«1000E+00
«5000E+Q1
«2000E+0Q0
~<5000E+00
«1000E+00
-«20CG0E+0Q0
«3000E+00

M4

~+3000E+01
«6000E+01
«5000E+01
«2000€+01

M5

«6000E+01
«5000E+01
«2000E+01
«2000E+01

c3

ICES

M4

«3497E+02
—«4999€E4+02
«5000E+01
«2C0COE+01
0.
0-
0.

MS

«5013E+00
-«1750€+01
«2000E+01
«2000E+01
0‘
O.
0.

c3

FREQUENCY 2

DIMENSIONED (

"« TOOOE+OL
« 9000E+01
«3000E+01

-« 1000E+01

DIMENSIONED {

« 6000E+ 01}
«3000E+01
« 1000E+01
o.

DIMENSTONED

FREQUENCY

DIMENSTONED (

« TO00E+0O1
«9000E+ 01
«3000€+01
-« 1000E¢+01
o.
o.
o.

DIMENSIONED (

«6000E+01
«3000E+01
« 1000E+01
0.
Oe
o.
0.

DIMENSIONED

&x - 4)

«1000E+01
«1000E+0L
-+.1000€+01
«3000E+01

&X 4)

«4000€E+01
«3000€E+01
«2000E+01
«2000E+01

8x 1)

X 7)

«2001E+02
-«3000E+02
-« 1000E+01

«3000E+01
O.

O.
Qe

7X (4

«4000E+01
«3000E+01
«2000€¢01
«2000E+01

0.

0.

0.

14X 1

0.
0.

o.
0e
0.
0.



ROW
ROW
A0
ROW
ROW
ROW

9
10
11

13
14

O.
0.
O.
O.
Oe
0.
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® *
& PROGRAM L219A2 VERSION JUNE 29,77 IS FINISHED. *
* DATE OF RUN IS TT7/11/09. *
* TIME OF RUN 1S 09.46.28. *
. *
* *
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APPENDIX A

RELATIONSHIP BETWEEN INERTIA AND BODY-FIXED AXES
FOR A STRAIGHT AND LEVEL REFERENCE CONDITION

This appendix describes the transformation of equations of motion and load equations
from inertia to body-fixed axis coordinates. The transformation developed is nonlinear
(as shown in appendices B and C) but for straight and level flight, the equations reduce
to a linear set. It is this linear transformation that is included in EQMOD.

The differences between inertia and body-fixed axes for small perturbations about a
straight and level reference condition is illustrated in figures 13 and 14. In the inertia
axes (which are fixed in space), the motion of the body relative to these fixed axes is
described by the velocity components in the direction of the fixed axes. Thus the
velocities of the body are x’, 2’ and 6’ for symmetric and y', ¢’ and ¢’ for antisymmetric
motions, and the accelerations are ¥', 7', 8’ and ', ¢’ and ', respectively. In the case of
body-fixed axes, the motion is described by the components of the velocity relative to
the fixed inertial axes, but in the direction of the moving axes. For this case, the
velocities are u, w, and q for symmetric and v, p, and r for antisymmetric motions.
‘Because the axes are rotating, the expressions for acceleration contain products of
linear and rotational velocities; they are 4 + W4, w - Uyq, q, and (V- Wyp + Uji), p, ¥
for symmetric and antisymmetric motions, respectively. The factors U; and W; are the
reference (in this case, 1g) values of velocity in the x' and z’ directions. Reference 9
contains a development of the rigid body equation of motion in body-fixed axes.

The symmetric and antisymmetric angles of attack « and 8 are given by w/Uy and v/U;
in body-fixed axes and z'/U; +0 and y'/Uy + aj¢’- ¢’ in inertia axes. A point not
illustrated in figures 13 and 14, is that the force due to gravity is constant in both
magnitude and direction in inertia axes, but in body-fixed axes the weight force
develops components along the axes as the axes rotate.

Appendices B and C contain a discussion of the relationship between inertia and
body-fixed axes based upon the formulation contained in reference 10. It is shown that
for a general reference condition, the symmetric and antisymmetric equations of motion
are coupled, and the relationship between inertia and body-fixed axis motions is
nonlinear. For the special case of a 1-g level reference condition, the symmetric and
antisymmetric equations are uncoupled and the inertia and body-fixed axis motions are
related by the following:

u=x-w 6"

w = z'+U; ¢’

q =0 (A1)
v=y+w e -Up v
p=¢
- (A2)
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{a) Reference Condition (1g Level Flight)

Reference
flight path
Wy
Wi
{b) Perturbed Condition tan aq = ™
1
Reference
flight path
Inertia axes accelerations
'x'I’ 'z':' .d'
7' a=8'+—
Uy
Reference
flight path
Body Fixed Axes Accelerations
u+Wqaq, w-Uqq, q
& =~

Figure 13. — Inertia and Body-Fixed Axes for Symmetric Perturbations
About a 1g Reference Flight Condition
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(a) Reference Condition (1g Level Flight)

Reference
flight path

(b) Perturbed Condition

' flight path
Inertia axes accelerations
V.8 ur

X Reference

: fhght path
Body Fixed Axes Accelerations

v-W1p+U1 r,p,r

1

Figure 14. — Inertia and Body-Fixed Axes for Antisymmetric Perturbations
About a 1g Reference Flight Condition
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EQUATIONS OF MOTION

The rigid body equations of motion for symmetric and antisymmetric motion, assuming
« 1 is small, is given in equations (A3) to (A6). The inertia axis equations are simple
Newtonian equations, and the body-fixed versions are similar to those derived in
reference 9 (eq. (4.14,12) and (4.14,13)). However, equations (A3) to (A6) do not assume
that the origin of the axis system is at the c.g., nor that a | is zero (stability axes), but
does assume a straight and level reference condition (0 ¢ in ref.9 is zero). These
equations follow the practice of reference 10 in using a prime for inertia axis quantities.

SYMMETRIC EQUATIONS - Rigid Body Equations of Motion

Inertia Axes

MX' + MAz, 6" = F,

]
T

1l
3]

MZ' + MAng 8’ z

lyye + MAngx - MAxcgz + MgAngO = Myl (A3)

Body-Fixed Axes

Mu + MAz,, q + MWy q + Mg6' = F,

cg
Mw - MAng& - MUjq=F,
Iyyq + MAng u - MAxcgw + MAzcgwl q

+ MAng Upgq+ MgAngG' = My (Ad)

ANTISYMMETRIC EQUATIONS

Inertia Axes

MY + MAz, ¢ + MAx, ¥ = Fyr
Iy x ¢ - Ixy v - MAzCg y o+ MgAng ¢ = M,
Ly V' = Ly & + MAX. V' = My (A5)

Body-Fixed Axes
MV - MAze, b + MOx, F - MW p + MU 1 - Mg¢' = F,

xx P

+

-1 Mghz ., ' =M

1 2 - MOz oV + MOz o Wy p - MAz, U r

X

Lyt - Ly, b+ MAX ¥ - MAx, Wy p + MAx, Upr - Mghx¢' = M, (A6)
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where:

M = mass

-t
il

inertia
Axc, g=XREF-Xc. g.

Aze g=ZREF-Zc.g.

AERODYNAMIC FORCES

Aerodynamic forces are normally quoted in terms of lift, drag, side force, and rolling,
pitching, and yawing moments (L, D, Y, 1, m, n), these quantities being defined along,
and normal to, the relative airflow. Thé aerodynamic forces required in the equations of
motion are the components of those forces and moments in the direction of the axes.
Since the inertia and body- fixed axes make different angles to the airflow, the
expressions for the forces and moments are different. Figure 15 shows these forces and
moments for symmetric perturbations assuming that «y is small; that is, cos &y = 1 and
sin @y = oq. In inertia axes, the angle between the axes and the flight path is a; +

z'/Uy, and in body-fixed axes it is aj + w/Uq; since w = 2’ + Uy0’, the difference is

clearly ¢, and the following relationship exists between the inertia axis forces (X', Z,
My ') and the body axis forces (X, Z, My):

X=X+L¢
Z=127-D¢’
My = M, (A7)

Figure 16 shows the forces for antisymmetric perturbations, and by similar reasoning to
the symmetric case:

Y =Y-Lg¢
MX = MX’
M, = M- mg¢’ (A8)

In the transformation of the roll and yaw moments, the small-angle approximation for
ay has not been used.
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(a) Inertia Axes

{(b) Body-Fixed Axes

irflow
al My
Z
w
X =1L (a1 +—)— D
Uy
Z=—L—D(a +—>
LMY
My =M

Figure 15. — Aerodynamic Forces and Moments for Symmetric Perturbations
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Mz M, t : n

-y

Mxr=Mx=2cosa1-nsin oy

M, =M, + m¢’ =ncosqy + Lsin otq + m@’

(b) Inertia Axes

;Y'

Y =y + L¢

(c) Body-fixed Axes

Figure 16. — Aerodynamic Forces and Moments for Antisymmetric Perturbations

111



AERODYNAMIC DERIVATIVES

Equations (A9) and (A10) show the inertia axis perturbation aerodynamic forces written
in terms of the customary aerodynamic derivatives. The nondimensionalizing constants
are those adopted in reference 10. The derivation of these expressions from the force
equations in figures 15 and 16 is outlined in appendix D.

SYMMETRIC

Ly

o x' b4
FXI = qu [(CLG(XI CDA) +<CL1 + CLO{ oy -—CDO[)__

Uy 1

ng

+(Cpa o -C ,)L 2
( Le “17MD8) 55, o7 ¢ (‘CLGO‘I * CLyap + Cpy al-cDa>e'

=2
C C o,
+ (CL/\a] + CL/\ o —CD/\ CD@)W_] 0 + (CL(/i\ozl —CD/.\> 27-]—12 0
- Doy —Cd) S &
F’=Q-SW 'CD"O‘I“CL’\"&”" -CD al_CL E,_.
z u u U] 1
al—CL/'\ E 'Z.' + CDA a12 C a1+CLAa 'C 9
a J2U; Uj &1 -Cp, Tt S 0
52
+{-Cphay -Cpaa; -CiA-C /\) g’ +(-C Aay -C /.\)_ 9
(DlDlLLzu Dqqu2U12
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where:

Dynamic pressure

Wing area

M.A.C.

7o)
=
]

Span

o o ol
0]

Control surface angle

ANTISYMMETRIC

+{C.oax; + C b_l - ] '
2
+(-c’\+c)l¢3'+cz\ig"
Yﬁ y/r\2U1 yI'-4Ul

[N .,

M, = @Sy b|{ Cp. cosay - C,, sinay Y2+ {Cpcosay - C. .2 sinay } 24—+ [ C Cos
X q oy [( QB 1 nB I)U1 (QB 1 nB 1 U1 Qﬁ 1

. b '
= Cp sinay Yoy ¢ +(Cp® cosay oy - C Asinaey af + Cpacosay — Coa sinay Y= ¢
b2
+{ Cpf cosay - C . Asinay ) —2 :ﬁ;' +{-Cp_cosxy + C_ sinoy ) ¢
( Qp 1 ng 1) 4U1 < Qﬁ 1 ng 1

b

+ (— Cgé\cosal + Cn:‘; sinal + CQ/r\cosozl - Cn’r\Si"al) 2U1 '

b2 ..

<+ CQ’I_.‘cosal - Cn/;\ sinal) 2512 v +(CQ6 cosay "Cna sinal) 8

+ (ng cosay - Cng cosal) %Ul 8]
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(¥ (1T}

M, = @Sy b[(Cnﬁ cosixl + CQﬁ sina1>%l— + (Cngcosal + CQESinal)%I
+ (CnB cosay + CQﬁ s'inal) o) ¢+ (Cnlé\cosal ap + ngsin&l ay.

| : b e, _ 62w,
+ C acosay + Copa sina = ¢ +{ C.nHcosay; + Cpasinx )——— ¢
nf)\ 1 Qf,\ 1) 2U, < ng 1 Qp 1 4U12

+ <'Cnﬁ cosay ~ CQﬁ sino ) Yo+ (— Cné-\cosozl ~ CQ/B\ sinay + Cn,r\cosal

2
. b T . b .0
+ CQ{_\smal) 2—U1 v+ (Cn/f\cosal + Cg?sma1>4——12 ¥

+ (C“S cosop + CQ6 sinoq) 5 + (Cng cosay + ngsina1> 2—%; 5]

The DYLOFLEX system is provided with an option in EQMOD to replace the rigid body
force elements calculated by the aerodynamic theory with terms calculated from rigid
aerodynamic derivatives obtained from FLEXSTAB or any other source. The program
will generate these rigid body force elements from the rigid body derivatives. Tables 2
and 3 show these elements and their locations in the equations of motion coefficient
matrices. The quantity a; in these figures should be understood to be the angle of
attack of the coordinate system in 1l-g flight. Since ay is calculated in an aeroelastic
trim analysis, care must be exercised to ensure that ay is defined in the same way as in
the dynamic analysis. Also, since the value of a; in the trim analysis is a function of
the assumed structural constraint, an allowance should be made for the difference in
constraint between the trim and the dynamic analysis. Tables 2 and 3 assume that the
moment derivatives Cp and Cp, and Cp are referred to the origin of the DYLOFLEX
axis system. This may not be so, and EQMOD will have the facility to transfer these
derivatives to the origin.
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row

row

row

row
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Table 2. — Formulation of the Rigid-Body Symmetric Generalized Aerodynamic Stiffness and
Damping Matrix Elements Using Stability Derivatives

Aerodynamic stiffness matrix (M 4]

XcoL ZcoL fcoL Scot
8w ( Co,_*Cp, ~* Cpr - Cpa 3 Swifo, %o
( QR CIE [T-1 UE . ( 6R SE
0 0
2 2
-a, C -0, C +asC +as C -, C -, C
g 7 S T T LﬁE) 16 1 LSE)
_ 2 -
0 0 aSyw(C, —a €. t+aCp —aj Cpa 3 Sy (G, *%Cp
¢ aR YR g “R) ( 5r R)
0 0 @ Sy&(~Cpp  *+0;Crn ) - dSyécy
( Tag "R Sr
Aerodynamic damping matrix [Msl
*coL ZcoL 9coL ScoL
a Sy 3 Sy Sy é
—— (Cra +C —_ (c +Cn —0,C Cpa *+Cpa +CpA +Cph
s ( Dl DGE_ Uy Pag Pag ! g 2y ( Pfk Da Dag Cag 0
0 CA =0, CiA -, C -C, <-C -0y C A=0; CoA =0 Ci A =0, C A
108 - LuE) 1%,y L,E) T R R P LaE)
a Sy 3 Sw GSyé
— (C/A +0;C -— (C +a, C —— (C/ A +C,_/,\ +a1CD,\ +a1CD/.\ 0
u g ! Dcn) Yy (L“n D“R) 2Y, ( “on  ag R “R)
7 Swi i Sw ¢ s
q ¢ q ¢ qSy ¢ 0
- - - c ~CpA =Crh
T U Mag 20, (764 &,

X 2z ,0 ,and & are the column locations of the x, z, 8, and § fresedoms.
COL’ “COL' “CcOL coL

{Note: There may be more than one control surface freedom.)

The [M4] ) [Msl elements are defined in the inertial axis system.
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Table 3. —Formulation of the Rigid-Body Antisymmetric Generalized Aerodynamic Stiffness and
Damping Matrix Elements Using Stability Derivatives

Aerodynamic stiffness matrix [M4]

vYeoL $coL YcoL ScoL
aswle, S -C,. ) G SwCy, -85y C
0 R e Yér Y8R YéR
dSyb(-Cp  cosay+Cp  sinay) oy q Sy b(Cp cos &y -C, sinay) G Syb(-Co cos ay+C.  siney)
0 ] (i 8 5 5
R R R R R R
GSyb(-C, cosa,-Cp sinay)a g b(C cos &, +Cp  sinay) awa(~C cos 0q - Cp  sinay)
0 Swb(Cop cosy-Cop sina) Sw b Cog 170 s ng 1765 %
Aerodynamic damping matrix [Ms)
yeoL ¢coL Yeou ScoL
a Sy 3 Syb g Syb
- c (-CA—a C’.‘) (-C +C A ) 0
u, R 2V, Yor | i 24 ™
a Syb 3 Sy b2 3 Sy b?
-C cos & (—C cos &, +C A sinx — (—C cos &, +C sin &
1 N 1 1 0N 17V 1
u, ( sz[3,? 2, PR "og 2U, R 'R .
+C sina) -C {cosoy) aq+C A (sina,) & ) +C cos a,-CA sina)
1 4 il 1 1
"R “?R U T B "
G Syb d Sy b2 G Sy b
-C cos & — (-Cha cos y-Cn sinc (—C cos &, -Cga sinQ
1 1 1 nA 17 1
Uy ( "B 2y, "PR PR 24, R R 0

-C%Rsina1)

-C.A {cosaq) a,-Ch (sina, o )
o 1oy @R 1)y

+ Cngn cos Q4+ ng\Rsin oy )

The [M4] and lM5] elements are defined in the inertial axis system




TRANSFORMATION TO BODY-FIXED COORDINATES

DYLOFLEX develops the dynamic equations of motion and load equations using inertia
axes and provides an option to transform the coordinates to body axis coordinates by
means of equations (A1) and (A2). The following equations show the application of this
transformation to equations (A3) to (A6) for a straight and level reference condition.
The equations that result are the same as the body-fixed equations except that the
weight term in the x and y equations appears as a lift term.

The method of implementing the transformation in EQMOD is shown in section 4.5.

From Equations (Al):

X = u + Wl é’ =u-+ Wl q
7 = v'v - Ul é, = W - Ul q
0 =4

Substituting in Equations (A3)
Mu + MAngd + MW q = Fy
Ma - MAx

cg‘i'MUlcl = Fy

Iyyq + MAngl'l - MAng\fv + MAZCg Wiq + MAxCg Ujq + MgAzcg g' = My'

From Equations (A7)
FX' = FX - QSwCLl o'

F= FZ
Myf = My
Therefore:

Ml + MAzcg § + MW q = Fy - qSyCp ¢’
Mw - MAngc'; - MUjq = F,
lyy § + MAzg & - MAx o W + MAzo, Wy @ + MAxc, Uy g

+ Mghz, 6" = M,

Since for a 1g Reference
E]—SW CL] = Mg b

The Above Equations are the Same as Equations (A4)
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From Equations (A2)

oo,

=G—W1<13’+U1\L’=\‘/'—W1p+U1r_
¢’ =D

=7
Substituting in Equations (A5)

MV - MAzg, p + MAxgp T - MW p + MUjr = Fyr
Ixxp - Ixzr - MAzcgv + MAngWI p - MAng Ul r + MgAch ¢ = Mx'

Iyt = Iy b + MAXgV - MAxoe Wip + MAx,  Upr = My

From Equations (A8)
Fy' = Fy + aSw CLl @'

M, = M,

Therefore:
MV - MAz p + MAxc, T - MW p + MUjr =F, +gSyCp ¢’
Iyx P = Iyz F = MOzgp v + MOz, W) p - MOz, Upr + Mgz, ¢ = My
L,r-1,p+ MAng\'/ - MAxoWyp + MAx, Uy r =Mz+ﬁSwEle ¢

The Above are the Same as Equations (A6)
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DISCUSSION

It is shown that the simple transformation from inertia to body-fixed axis coordinates is
a valid operation that should render the data more acceptable to groups accustomed to
body-fixed axes and assist in comparing rigid body derivatives. This procedure, however,
is valid only if the reference condition is straight and level flight.

It should be pointed out that DYLOFLEX defines motions in a set of inertia axes with x
defined in some convenient direction along the body. These axes are the inertia
equivalent of what reference 9 (which uses body-fixed axes) refers to as “body” axes.
Equally well, however, x could be defined along the reference flight path; in which case,
the axes would be the inertia equivalent of “stability” axes. If these axes are used, then
a; = 0. Provided a; is reasonally small, it can ‘be (and usually is) neglected in
symmetric dynamic analyses. However, because of the effect it has on roll/yaw coupling
which, in turn, affects the dutch roll response, it should not be neglected in
antisymmetric cases.
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APPENDIX B

RELATIONSHIP BETWEEN INERTIA AND BODY-FIXED AXES
EQUATIONS OF MOTION

Figure 17 shows the Laplace transform of the 11near1zed general perturbation equations
for an elastic airplane. The coordinates are:

up, Vp, Wp, Pp, Gp, I'p Perturbation linear and angular velocities relative to a set
of body-fixed axes with the origin at the airplane c.g.

Xp, ¥, Zp Perturbation displacements of the c.g. relative to a set of
inertial axes. These axes are oriented to the horizontal
through the constant Euler angles 6,9(,¥ .

opd’p,‘l‘p Perturbation values of the Euler angles (rotations of the
body-fixed axes relative to the inertia axes).

The subscript 1 is used to denote the reference values of the above.

Ues, Uea Perturbation values of symmetric and antisymmetric
elastic coordinates chosen so that their contribution to the
total linear and angular momentum of the airplane is zero.
In other words, these coordinates are associated with
free-free normal modes of vibration of the structure.

In these equations:

M Airplane mass.

Ixx’Iyy’Izz’Ixz Airplane inertias.

S Laplace operator.

MS,DS,M A,D A,K A The generalized structural mass, damping, and stiffness
matrices for the symmetric and antisymmetric elastic
coordinates.

FX,Fy,Fz,Mx,My,MZ External forces and moments.

QS;QA

Aij Time variant coefficients (functions of 6,6,V ).
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The equations assume that the airplane is symmetrical. The coordinates have been
arranged into symmetric and antisymmetric groups. In each group, the first three
equations are the rigid body Euler equations of motion, the next three are the auxiliary
equations, and the last are the elastic equations. Since the inertia coordinates xp’, yp’,
and z ' do not appear in the equations of motion, it is usual to omit these equations.
There is no coupling between the elastic coordinates and the rigid body coordinates
since the elastic modes are free-free. The elastic deformations contribute to the external
forces and moments however.

The coefficients Ajj are shown in appendix C. These coefficients are functions of 6y,
¢1, and ¢; (the reference values of the Euler angles) and since 6y, ¢1, and ¢y are
time variant, the coefficients are time variant. It should be noted that for a special set
of inertia axes where z’ is aligned with the gravity vector, 6g= ¢g=0 and the
equations become identical to those shown in reference 10 (equations (6.2.29), (6.5.16)
and (6.5.17)). The only time variant terms in the equations of motion are those
associated with the gravity vector and it is usual to solve the equations of motion
assuming that they are approximately constant. As can be seen from appendix C, the
condition for these terms to be constant (if ¢ and ¢ are zero) is: 6;=¢; = 0.

Even if the gravity terms are assumed constant, the transformation from body-fixed to
inertia coordinates (given by the auxiliary equations) is in general nonlinear, since the
coefficients are functions of 61, ¢1, and 3 . All the coefficients in figure 17 become
time invariant if 64 = ¢; = ¥ = 0. As shown in appendix C, this implies that P; =
Q1 = R; = O (that is, the reference flight condition is rectilinear. Since 61, ¢2, and
¢ 1 are constant, the inertia axes may be oriented so that 61 = ¢3 = = 0. Figure 18
shows the equations for this case.

Applying the transformation given by the auxiliary equations to the equations of
motion results in the Lagrangian form of the equations shown in figure 19.

If the reference condition is straight and level flight, then ¢g= V; =0 and tan 6g=
W3/U;. If 8¢ is put to zero, the axes become inertia stability axes and the equations
are shown in figure 20. The equations of motion in figure 20 are those generally used
for loads and the symmetric and antisymmetric analyses are carried out independently.
The forces and moments on the right-hand side are, of course, written in terms of the
inertia coordinates. The auxiliary equations are used primarily to transform
aerodynamic wind tunnel data, which is normally quoted in terms of body-fixed axis
coordinates, into iner{ia coordinates. For example, figure 20 shows perturbation « and 8
in both body-fixed and inertia coordinates. '
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APPENDIX C

EQUATIONS OF MOTION TIME VARIANT COEFFICIENTS

The forces to gravity in the inertia axis systems are:

Fy ' = - Mgsinb,
Fyr = Mg singq cosf,
F,» = Mg cos¢, costy

Relating the inertia axis to the body axis, yields the forces due to gravity in the
body-fixed axis system

F cosf cosy Fyr + cosd siny Fyr - sind F;

X

F

]

y (sindz sinf cosy - cosg sim,b) Fyr

+ (sind) sinf siny + cos¢ cosy ) Fyr
+ sing cosf F
F, = ( cos¢ sinf cosy + sing siny ) Fy

+ (cos¢ sinf siny - sing cosy ) Fyr

+ cosg cosf F,

Fy = (cos@l - sinf | Gp) (coswl -siny ‘l’p ) Mg sinf,
+ (cos@l -sinf Bp) (simlzl + cosy; l]/p)Mg sing , cosf,,

- (sinGl + cosf Gp) Mg cos¢ , cost,

~Fx, = Auglp * Auy¥p
-

Au'o = -Mg |sinf cosy sinf, - sinfj siny singg cosfy

X

- cosfl | cosg,, cos@o]

= - Mg | cosf siny/ sinfy + cosf coswl sing,, cosBo]




Fy = -[(sin¢1 + cosg ¢p) (sinBl + cosf Bp) (coswl ~siny t,l/p) -
(cos¢1 ~sing qu) (simpl + cosy ‘l’p)] Mg sing,, '

+[(sin¢1 + cosg ¢p)(sin01 + cosf Gp) (siml/l + cosyy tl/p)+
(cos¢1 - sing ¢p) (cosn[zl -siny ll/p) ] Mg sing, cosf,

+ [(sinzpl + cos¢y ¢p) (cos01 -sinf Bp) ] Mg cose,, cosfy
-Fyp = Avg fp + AV.¢¢p tAyv,y Ve
Ay 9= -Mg [—sin¢1 cosf | cosy sinf, + singy cosfy sinyy sing, cosfp -

sing{ sinf | cosg, cosf, ]

Av,¢= - Mg I:— cosp sinf | cosy | sinf,, - singq siny sinfy + cosg sin01 siny 1 sing, cosf,,

- sing| cosy | sing, cosfo + cospq cosfy cospg coseo]

Av,¢ = - Mg [ sing; sin@ | siny sinfy, + cospl cosy | sinfy +

sing sin01 cosyq singg cosfy - cospq sinyq singq cosfy ]

Fz

—[ cos¢ —sing; ¢'p> (sin@l + cosf Op) (coswl ~sinyy 'J’p) +
sing; t+ cospy ¢p) (sim[zl + cosyy dzp)] Mg sinf,,

(
(
+[( cos¢| - singy d)p) (sin(?l + cosf Bp) (simlzl + cosyy ll/p) -

singy + cospy ¢p)( cosyq - simpl d/p)] Mg sing, cosf,

+ [( cos¢| - sing| ¢ p) (cos@l - sinf Gp) ] Mg cosgg cosfy
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A ™

-F 0= Aw,00p t Ay gfp *+ Ay y¥p

Ay,p= ~Msg | —cospj cosdy cosy sinfo + cosdj cosoll' siny singqg cosfg -

cosd si_nel Ccosp, co_se_o]

Ay o= - Mg sing| sinf | cosy sinfy - cosp sinyy sinf,

N

- sin¢1 sinGl sinyq sing, cosfp — cosgy COS!P] cos¢g cosly

- sing| cosf cosd, cos@o]

Aw,tb = - Mg [ cos$ sinf y siny| sinf, - singy cosy sinfg

+ cos¢y sinfy cosy sing, coslg + singq siny ] singy cosﬂo]

For the condition that

then

Au’e = Mg cosf |

Ay = 0

Av,f) = Mg singj sinf
Av,¢ = - Mg cosg cosf
Ayy = 0

= Mg cosgq sin01

Aw,¢ = Mg sing; cosf |

Awy = 0
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From equation 6.5-17 (ref. 1G}
X = up(cosﬂl ~sinf Bp) (cosgbl - siny) l.bp)
+U1[( cosé | —sind | Gp) (coswl - siny, a,bp) - cosﬂl cosvy ]
+vp[(sinqb1 + cospy ¢p)(s'm91 + cos) Bp) (cosx,b] -'simb] \bp)— (cosﬁzl -sin¢]¢p)
(sin\bl + cosy y[:p) ]
+ V) [(sinqbl + cosp ¢‘p) (sinﬂl + cosfy Gp) (coswl -siny 1l lﬁ'p)- (cosqb] - sing ¢p)
(sim,bl + siny :,bp) -~ singy sinfj cosyy + cospg sin\bl]
+wp[ (cosg&l —sinqbl qf:p) (sim?l + cos.?l Bp) (cosq!r] -sinyy ybp) + (sinqsl + cosg) qbp)

(Sil'llﬁl + COSl,’Jl 'i’p)]

+W) [(cosqbl - sing; qbp) (sinGI + coséh Bp) (coswl-simb] a,bp) +(sin¢1 + cospy ¢p)

(sim,bl + cosyy \,bp) - (cosqbl sinfl | cosy - sinqbl sinwl)]
Then

.
|

! .-(:Ax'uup + Ayy Wp + Ayrg Gp + Ayry p + Ax;f, qu + Ax'l,b \,Dp

L}

up [cos&l cosy 1]

+ wp[cosqbl sinf | cosyry + sing, sim,bl]

+ 6p ["Ul sinf ) cosyy + Vjsing) cosy cosyy + Wy cospy cosé cosybl]

+ Vp[sinqbl sinf | cosy | - cosp; siny ]]

+ ¢p[\’1 cospy sind cosyy + V) sing; siny ~ W, singy sinfj cosyy + W, cosgy siny ]]
+ ¥p ['Ul cosf siny | - Vy singy sinf sing) - Vy cospy cosyy ~ W cosdy sinfy sinyy

+ WI sim;bl COSIJJI]
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v o= up[ (cos@l - sind 4 91) (sim{zl + cosy \,’Jp)]
+ U {(50591 - siné | 8p)(sim,b1 + cosP w.bp) - cosf | simbl]
+ vp [(sinq&l + cosg, ¢p) (sinBI + cosf ﬁp) (sinu’ll + cosyy lbp)Jr (cosqt] ~ sing ¢'p)
(cosxle ~sing \flp)]
+ VvV [(sincﬁl + cosg q‘)p) (sinﬁl + cosf GP) (sim};l + cosy ybp) +(cos¢! ~singy ¢'p)
(Costh - siny \f’p)— singj sinfty siny; - cosg, cosr,br]
+ wp [(CQS(I!] ~ singy ¢p) (sinG] + casdy Gp) (sin‘,h] + cosyy lﬂp) - (simt] + cosdy tﬁp)
(coszﬁl - siny| llfp)]

+ W [(cosgﬁl ~ sing ¢p) (sinﬂl + cosf Gp) (sim,bl + cosu,bl l,bp) - (sin¢[ + cosg) qbp

(cosv#] —simb] xfxp) - cosé sinBl singy + sing) cosyy ]

V= AggUp F Agrgwp F Agg g Ap va F Ay by Ayry Y

y' = up [cose} sin\bl]
+ vp[sinqb] sind singy + cosgy coss'll]

+8p[—U1 sinff| singy + V| sing| cosfly sing| + W) cosg; cosd sinybl]
+ wp [{:05451 sin6‘1 Sinl,fll —singbl cosy l]
+ ¢p [V] cosp; sind sing ) - Vl singy cosyry — Wy sing, sind y siny/y —Wl cosd cosu'/]}

+ "Pp [Ul cosfly cosyy + VI sing; sinB{ cosyy - V| cospy singy + W cosgy sinf) cosy

+ Wy sing, sint,’:;]
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Z = ~up [sinﬂl + cosf | Hp]
~-U; [ sinff; + cosf; 8p -sinf 1]
+ vp[ (singy + cosdy ¢p) (cosd | -sindy 6p)]
+ Vi [(sinq)l + cosg| ¢p) (cosf| ~sindy @ p)-sing; cosﬂl]
+ wp [(cosr,bl -sing| ¢p) (cosd| -sind Bp)]

+ Wy [(cosd:l - singy qbp') (cosf | - sinfy Bp) - cospy cosﬂl]

2 = Upy [—sim?l]
+ Wp [cosqbl cosf I]
+ Bp [-—ul cosf | ~ V sing| siné | - Wy cosg; sinﬂl]
+ Vp [sinq’:l cosf 1]
+ ¢p [Vl cospy cosl; — Wy sing cosf 1]
+ ¢y (0]

= A u

Zulp T AzwWp t Ay Bp T Ay vy T Ay dg

However, for rectilinear flight, the following must be true

¢y = Pl + (Ql Siﬂt}bl + Rl COqul) tanﬂl =0

él = Qq cospy - Rl sing) = 0
- 151 = (Q] singy + Ry cosg )sec&l =0

nooP]=Qi=R1=0
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APPENDIX D

DERIVATION OF PERTURBATION AERODYNAMICS FORCES
FOR THE INERTIA AXIS SYSTEM

The following shows the symmetric perturbation forces expanded in terms of the
derivatives of the forces X', 2’ and M;, with respect to the inertia axis coordinates (Q).
Note that § is a control surface rotation. The force derivatives are found in terms of the
aerodynamic derivatives using the expressions in figure 15 and neglecting products of
small perturbations. [t should be noted that the aerodynamic derivatives are those used
in reference 10, and equations (A-1) are used to transform the coordinates from body to
inertia. Also, the reference drag coefficient (‘D is understood to contain thrust and
consequently is zero.

The perturbation forces are expanded in terms of the inertia axis coordinates (@) thus

e X o 3X . X X . X’ axX' s,
Py =g Q=gg ¥ togt ropt vy Ot 5 O
DX e BX .
T 0t a5 8t a8
' 9z’ _az'
F, =):5—Q——x + Etc.
M., aM!
M, =2 35°Q=35 ¥+Ete
where (from the equations in figure A3)
. d| a +—-—)
X _dLf BN, (1 Ui/ ap
3Q Q72T aQ 3Q
éf
gla+ - —
o' 3L 3D (2 p (e o)
3Q  8Q B ! U]) aQ
aM_:v' am
Qg 3Q



The lift, drag, and moment are expanded in terms of the body-fixed axis coordinates

thus

u=x'-w o'
w = z’+U16
q= 06

The expansion in terms of the inertia axis coordinates is:

, . _ .,
L=9dS [C +Cr X0 B4 Cyp 7 =+ - * +C '
w|CL, YO T O, UL L T, T Crg@® +Cp )0
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o JoL (L2 aD|. oL fo; 2 1_ 3],
Fx'= lai,»(a1+U1)+LxO-a).(,]xf+ [ai'( +U1)+Lx Ul'ai']i

’ °, 3’ .
+ [@L(a +Z. ) +Lx0- %‘zg].z.' +[g_:)_~l. (‘11’ + ﬁ—]) +Lx0 -g—g]o' + similar terms in

Neglecting products of small perturbation such as 2z’ X', z' Z', etc. and those which arise

i.n the second term in the expansion of L xU-l— 7’
1

 |3Sw q Sw .
X [ U, Crgar~"u; Cog | ¥

aSWEC o E]_SWEC .
202 Ly 17 0P D& °

-

+ aSw (CLOZ —C!l CLﬁ) Oll -Q‘SW (CD&"“I CDU)] Iy

E SWE(C C ) Sy e (c C 6
.+ o -3 —_— o+ '
] 2U, Ly La 1~ 995w 2U1 D& Da )

. g Sw 52C asw?:'zc .
Ty, YLa % T 5. D2
2U, LTI 20, ~Dg

o

+

a -—-—E g A A E— A Y

and similarly for F,' and My’
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